Farg’ona filiali kompyuter injiniringi fakulteti 716 – 20 guruh talabasi




Download 86,34 Kb.
bet2/2
Sana20.02.2024
Hajmi86,34 Kb.
#159092
1   2
Bog'liq
3-amaliy mashg\'ulot

Foydalanilgan adabiyotlar:


  1. Jordan, J. Intro to optimization in deep learning: Gradient Descent/ J. Jordan // Paper-space. Series: Optimization. – 2018. – URL: https://blog.paperspace.com/intro-to-optimiza-tion-in- deep-learning-gradient-descent/

  2. Scikit-learn – машинное обучение на Python. – URL: http://scikit-learn.org/stable/ modules/generated/sklearn.neural_network. MLPClassifier.html

  3. Keras documentation: optimizers. – URL: https://keras.io/optimizers

  4. Ruder, S. An overview of gradient descent optimization algorithms / S. Ruder // Cornell University Library. – 2016. – URL: https://arxiv. org/abs/1609.04747

  5. Robbins, H. A stochastic approximation method / H. Robbins, S. Monro // The annals of mathematical statistics. – 1951. – Vol. 22. – P. 400–407.

  6. Kukar, M. Cost-Sensitive Learning with Neural Networks / M. Kukar, I. Kononenko // Machine Learning and Data Mining : proceed-ings of the 13th European Conference on Artifi- cial Intelligence. – 1998. – P. 445–449.

  7. Duchi, J. Adaptive Subgradient Methods for Online Learning and Stochastic Optimiza-tion /

J. Duchi, E. Hazan, Y. Singer // The Jour-nal of Machine Learning Research. – 2011. – Vol. 12. – P. 2121–2159.

  1. Zeiler, M. D. ADADELTA: An Adap-tive Learning Rate Method / Cornell Univer-sity Library. – 2012. – URL: https://arxiv.org/ abs/1212.5701

  2. Kingma, D. P. Adam: A Method for Sto-chastic Optimization / D. P. Kingma, J. Ba // Cor- nell University Library. – 2014. – URL: https:// arxiv.org/abs/1412.6980

  3. Гудфеллоу, Я. Глубокое обучение / Я. Гу-дфеллоу, И. Бенджио, А. Курвилль. – М. : ДМК Пресс, 2018. – 652 с.

  4. Fletcher, R. Practical methods of optimi-zation / R. Fletcher. – Wiley, 2000. – 450 p.

  5. Schraudolph, N. N. A Stochastic Qua-si-Newton Method for Online Convex Optimiza-tion

/ N.N. Schraudolph, J. Yu, S. Gunter // Sta-tistical Machine Learning. – 2017. – URL: http:// proceedings.mlr.press/v2/schraudolph07a/ schraudolph07a.pdf

  1. Ruder, S. Optimization for Deep Learn-ing Highlights in 2017 / S. Ruder // Optimization for Deep Learning Highlights in 2017. – 2017. – URL: http://ruder.io/deep-learning-optimiza- tion-2017.

  2. Рахимов, К. (2022). Тенденции развития анализа данных, искусственного интеллекта и интернета вещей. Gospodarka i Innowacje., 30, 209-211.

  3. Ortiqovich, Q. R., & Mamurovich, V. R. (2022). Mashinali o’qitish matematik modellari tasnifi. o'zbekistonda fanlararo innovatsiyalar va ilmiy tadqiqotlar jurnali, 2(14), 804-811.

  4. Raximov, Q., & Sotvoldiyev , A. D. o‘g‘li. (2023). Neyron tarmoqlarining yangi turlarini tahlil qilish. international scientific and practical conference "the time of scientific progress ", 2(4), 106–112. Retrieved from http://academicsresearch.ru/index.php/ispcttosp/article/view/1500

  5. Ortiqovich, Q. R. (2022). Vorisli deformasiyalanuvchi konsruksiya-larninng flatter masalasi. o'zbekistonda fanlararo innovatsiyalar va ilmiy tadqiqotlar jurnali, 2(14), 812-817.

  6. Tojimamatov, I. N., Mamalatipov, O. M., & Karimova, N. A. (2022). SUN’IY NEYRON TARMOQLARINI O ‘QITISH USULLARI. Oriental renaissance: Innovative, educational, natural and social sciences, 2(12), 191-203.

  7. Tojimamatov, I. N., Mamalatipov, O., Rahmatjonov, M., & Farhodjonov, S. (2023). NEYRON TARMOQLAR. Наука и инновация, 1(1), 4-12.

  8. Ne’matjonov, F. F., Jahongirova, J. J., Murodov, B. S., & Tojimamatov, I. N. (2023). CREATE DATA CUBE WITH MS EXCEL. European International Journal of Multidisciplinary Research and Management Studies, 3(03), 77-86.

  9. Kimyonazarova, D., Ne'matjonova, D., Ergasheva, B., & Tojimamatov, I. (2023, March). KATTA MA’LUMOTLAR BILAN ISHLASHDA HADOOP ARXITEKTURASI. In Международная конференция академических наук (Vol. 2, No. 3, pp. 96-99).

  10. Onarqulov, M., Yaqubjonov, A., & Yusupov, M. (2022). Computer networks and learning from them opportunities to use. Models and methods in modern science, 1(13), 59-62.

  11. Karimberdiyevich, O. M., Mahamadamin o'g'li, Y. A., & Abdulaziz o'g'li, Y. M. (2023). MASHINALI O'QITISH ALGORITMLARI ASOSIDA BASHORAT QILISH USULLARINI YARATISH. Journal of new century innovations, 22(2), 165-167.

  12. Mamirovich, I. S. (2022). Finlyandiya Va O ‘Zbekistonda Ta ‘Lim Tizimini Sifatini Solishtirma Taxlili. Miasto Przyszłości, 29, 347-350.




Download 86,34 Kb.
1   2




Download 86,34 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Farg’ona filiali kompyuter injiniringi fakulteti 716 – 20 guruh talabasi

Download 86,34 Kb.