Takrorlanuvchi jarayonlarni dasturlash




Download 27,86 Kb.
bet3/5
Sana06.06.2024
Hajmi27,86 Kb.
#260861
1   2   3   4   5
Bog'liq
asrorbek loyiha ishi (2)

1.3 Takrorlanuvchi jarayonlarni dasturlash;


Hozirgi paytda o’nlik sanoq tizimida arifmetik amallarni bajarish usullari hisoblash algoritmlariga soddagina misol bo’la oladi xolos. Hozirgi zamon nuqtai nazaridan algoritm tushunchasi nimani ifodalaydi? Ma’lumki, inson kundalik turmushida turlituman ishlarni bajaradi. Har bir ishni bajarishda esa bir qancha elementar (mayda) ishlarni ketma-ket amalga oshirishga to’g’ri keladi. Mana shu ketma-ketlikning o’zi bajariladigan ishning algoritmidir. Ammo bu ketma-ketlikka e’tibor bersak, biz ijro etayotgan elementar ishlar ma’lum qoida bo’yicha bajarilishi kerak bo’lgan ketmaketlikdan iborat ekanligini ko’ramiz. Agar bu ketma-ketlikdagi qoidani buzsak, maqsadga erishmasligimiz mumkin.
Masalan, shaxmat o’yinini boshlashda shohni yura olmaymiz, chunki bu o’yin algoritmida yurishni boshqa bir shaxmat donalaridan boshlash kerak yoki palov pishirish algoritmida birinchi navbatda qozonga suv solib ko’ringchi, osh qanday bo’lar ekan. Berilgan matematik ifodani soddalashtirishda amallarning bajarilish ketma-ketligiga e’tibor bermaslik noto’g’ri natijaga olib kelishi barchaga ma’lum.
Demak ishni, ya’ni qo’yilgan masalani bajarishga mayda elementar ishlarni muayyan ketma-ketlikda ijro etish orqali erishiladi. Bundan ko’rinib turibdiki, har bir ish qandaydir algoritmning bajarilishidan iboratdir. Algoritmni bajaruvchi algoritm ijrochisidir. Algoritmning ijrochisi masalaning qanday qo’yilishiga e’tibor bermagan holda natijaga erishishi mumkin. Buning uchun u faqat avvaldan ma’lum qoida va ko’rsatmalarni qat’iy bajarishi shart. Bu esa algoritmning juda muhim xususiyatlaridan biridir.
Umuman, ajgoritmlarni ikki guruhga ajratish mumkin. Birinchi guruh algoritmning ijrochisi faqat inson bo’lishi mumkin ( masalan palovni faqat inson pishira oladi), ikkinchi guruh algoritmlarning ijrochisi ham inson, ham EHM bo’lishi mumkin (faqat aqliy mehnat bilan bog’liq bo’lgan masalalar). Ikkinchi guruh algorimtlarning ijrochisini EHM zimmasiga yuklash mumkin. Buning uchun algoritmni EHM tushunadigan biror tilda yozib, uni mashina xotirasiga kiritish kifoya.
Shunday qilib, biz algoritm deganda, berilgan masalani yechish uchun ma’lum tartib bilan bajarilishi kerak bo’lgan chekli sondagi buyruqlar ketma-ketligini tushunamiz.
Biror sohaga tegishli masalani yechish algoritmini tuzish algoritm tuzuvchidan shu sohani mukammal bilgan holda, qo’yilgan masalani chuqur tahlil qilishni talab qiladi. Bunda masalani yechish uchun kerak bo’lgan ishlarning rejasini tuza bilish muhim ahamiyatga ega. Shuningdek, masalani yechishda ishtirok etadigan ob’ektlarning qaysilari boshlang’ich ma’lumot va qaysilari natijaligini aniqlash, ular o’rtasidagi o’zaro bog’lanishni aniq va to’la ko’rsata bilish, yoki dastur (programma) tuzuvchilar tili bilan aytganda, masalaning ma’lumotlar modelini berish lozim.
Berilgan masala algoritmini yozishning turli usullari mavjud bo’lib, ular qatoriga so’z bilan, bloktarh (bloksxema) shaklida, formulalar, operatorlar yordamida, algoritmik yoki dasturlash tillarida yozish va hokazolarni kiritish mumkin.
Endi biror usulda tuzilgan algoritmning ayrim xossalari va algoritmga qo’yilgan ba’zi bir talablarni ko’rib chiqaylik.

  1. Algoritm har doim to’liq bir qiymatlidir, ya’ni uni bir xil boshlang’ich qiymatlar bilan ko’p marta qo’llash har doim bir xil natija beradi.


  1. Algoritm birgina masalani yechish qoidasi bo’lib qolmay, balki turli-tuman boshlang’ich shartlar asosida ma’lum turdagi masalalar to’plamini yechish yo’lidir.


  1. Algoritmni qo’llash natijasida chekli qadamdan keyin natijaga erishamiz yoki masalaning yechimga ega emasligi haqidagi ma’lumotga ega bo’lamiz.

Yuqorida keltirilgan xossalarni har bir ijrochi o’zi tuzgan biror masalaning algoritmidan foydalanib tekshirib ko’rishi mumkin. Masalan:
ax2 + bx + с = 0
kvadrat tenglamani yechish algoritmi uchun yuqorida sanab o’tilgan algoritmning xossalarini quyidagicha tekshirib ko’rish mumkin.
Agar kvadrat tenglamani yechish algoritmi biror usulda yaratilgan bo’lsa, biz ijrochiga bu algoritm qaysi masalani yechish algoritmi ekanligini aytmasdan a, b, с larning aniq qiymatlari uchun bajarishni topshirsak, u natijaga erishadi va bu natija kvadrat tenglamaning yechimi bo’ladi. Demak, algoritmni ijro etish algoritm yaratuvchisiga bog’liq emas.
uddi shuningdek a, b, с larga har doim bir xil qiymatlar bersak, algoritm har doim bir xil natija beradi, ya’ni to’liqdir.
Yaratilgan bu algoritm faqatgina bitta kvadrat tenglamani yechish algoritmi bo’lib qolmay, balki a,b,c larning mumkin bo’lgan barcha qiymatlari uchun natija hosil qiladi, binobarin u shu turdagi barcha kvadrat tenglamalarning yechish algoritmi bo’ladi.
Massiv tushunchasi. Massiv bu bir tipli nomerlangan ma’lumotlar jamlanmasidir. Massiv indeksli o‘zgaruvchi tushunchasiga mos keladi. Massiv ta’riflanganda tipi, nomi va indekslar chegarasi ko‘rsatiladi. Masalan type turidagi length ta elementdan iborat a nomli massiv shunday e’lon qilinadi:
type a[length];
Bu maxsus a[0], a[1], ..., a[length -1] nomlarga ega bo‘lgan type turidagi o‘zgaruvchilarning e’lon qilinishiga to‘g‘ri keladi.
Massivning har bir elementi o‘z raqamiga - indeksga ega. Massivning x-nchi elementiga murojaat indekslash operatsiyasi yordamida amalga oshiriladi:
int x=...; //butun sonli indeks
TYPE value=a[x]; //ch-nchi elementni o‘qish a[x]=value; //x-yxb elementga yozish
Indeks sifatida butun tur qiymatini qaytaradigan har qanday ifoda qo‘llanishi mumkin: char, short, int, long. C++ da massiv elementlarining indekslari 0 dan boshlanadi (1 dan emas), length elementdan iborat bo‘lgan massivning oxirgi elementining indeksi esa - bu length -1 (length emas). Massivning int z[3] shakldagi ta’rifi, int tipiga tegishli z[0],z[1],z[2] elementlardan iborat massivni aniqlaydi.
Massiv chegarasidan tashqariga chiqish (ya’ni mavjud bo‘lmagan elementni o‘qish/yozishga urinish) dastur bajarilishida kutilmagan natijalarga olib kelishi mumkin. SHuni ta’kidlab o‘tamizki, bu eng ko‘p tarqalgan xatolardan biridir.
Agar massiv initsializatsiya qilinganda elementlar chegarasi ko‘rsatilgan bo‘lsa , ro‘yxatdagi elementlar soni bu chegaradan kam bo‘lishi mumkin, lekin ortiq bo‘lishi mumkin emas.
Misol uchun int a[5]={2,-2}. Bu holda a[0] va a[1] qiymatlari aniqlangan bo‘lib, mos holda 2 va –2 ga teng. Agar massiv uzunligiga qaraganda kamroq element berilgan bo‘lsa, qolgan elementlar 0 hisoblanadi: int a10[10]={1, 2, 3, 4}; //va 6 ta nol
Agar nomlangan massivning tavsifida uning o‘lchamlari ko‘rsatilmagan bo‘lsa, kompilyator tomonidan massiv chegarasi avtomatik aniqlanadi:
int a3[]={1, 2, 3};
Bir o‘lchamli massivlarni funksiya parametrlari sifatida uzatish. Massivdan funksiya parametri sifatida foylalanganda, funksiyaning birinchi elementiga ko‘rsatkich uzatiladi, ya’ni massiv hamma vaqt adres bo‘yicha uzatiladi. Bunda massivdagi elementlarning miqdori haqidagi axborot yo‘qotiladi, shuning uchun massivning o‘lchamlari haqidagi ma’lumotni alohida parametr sifatida uzatish kerak.
Funksiyaga massiv boshlanishi uchun ko‘rsatkich uzatilgani tufayli (adres bo‘yicha uzatish), funksiya tanasining operatorlari hisobiga massiv o‘zgarishi mumkin.
Funksiyalarda bir o‘lchovli sonli massivlar argument sifatida ishlatilganda ularning chegarasini ko‘rsatish shart emas.
Funksiyalarda bir o‘lchovli sonli massivlar argument sifatida ishlatilganda ularning chegarasini ko‘rsatish shart emas.
Ko‘p o‘lchovli massivlar ta’rifi. Ikki o‘lchovli massivlar matematikada matritsa yoki jadval tushunchasiga mos keladi. Jadvallarning insializatsiya qilish qoidasi, ikki o‘lchovli massivning elementlari massivlardan iborat bo‘lgan bir o‘lchovli massiv ta’rifiga asoslangandir.
Misol uchun ikki qator va uch ustundan iborat bo‘lgan xaqiqiy tipga tegishli d massiv boshlang‘ich qiymatlari quyidagicha ko‘rsatilishi mumkin:
float d[2][3]={(1,-2.5,10),(-5.3,2,14)};
Bu yozuv quyidagi qiymat berish operatorlariga mosdir:
d[0][0]=1;d[0][1]=-2.5;d[0][2]=10; d[1][0]=-5.3;d[1][1]=2;d[1][2]=14;
Bu qiymatlarni bitta ro‘yxat bilan xosil qilish mumkin: float d[2][3]={1,-2.5,10,-5.3,2,14};
Initsializatsiya yordamida boshlang‘ich qiymatlar aniqlanganda massivning hamma elementlariga qiymat berish shart emas.
Misol uchun: int x[3][3]={(1,-2,3),(1,2),(-4)}. Bu yozuv quyidagi qiymat berish operatorlariga mosdir:
x[0][0]=1;x[0][1]=-2;x[0][2]=3; x[1][0]=-1;x[1][1]=2;x[2][0]=-4;
Initsializatsiya yordamida boshlang‘ich qiymatlar aniqlanganda massivning birinchi indeksi chegarasi ko‘rsatilishi shart emas, lekin qolgan indekslar chegaralari ko‘rsatilishi shart.
Misol uchun:
double x[][2]={(1.1,1.5),(-1.6,2.5),(3,-4)}
Bu misolda avtomatik ravishda katorlar soni uchga teng deb olinadi.
Funksiyaga ko‘p o‘lchamli massivlarni uzatish. Ko‘p o‘lchamli massivlarni funksiyaga uzatishda barcha o‘lchamlar parametrlar sifatida uzatilishi kerak. C++ da ko‘p o‘lchamli massivlar aniqlanishi bo‘yicha mavjud emas. Agar biz bir nechta indeksga ega bo‘lgan massivni tavsiflasak (masalan, int mas [3][4]), bu degani, biz bir o‘lchamli mas massivini tavsifladik, bir o‘lchamli int [4] massivlar esa uning elementlaridir

Download 27,86 Kb.
1   2   3   4   5




Download 27,86 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Takrorlanuvchi jarayonlarni dasturlash

Download 27,86 Kb.