KIMYOVIY KINETIKA VA KIMYOVIY MUVOZANAT




Download 1.75 Mb.
bet18/41
Sana19.03.2017
Hajmi1.75 Mb.
#399
1   ...   14   15   16   17   18   19   20   21   ...   41
KIMYOVIY KINETIKA VA KIMYOVIY MUVOZANAT

R E J A :

1. Kirish.

2. Kimyoviy reaksiya tezligi va ta'sir etuvchi faktorlar

3. Katalizatorlar

4. Kimyoviy muvozanat va ta'sir etuvchi faktorlar.
Kimyoviy reaksiyalar tezligi xakidagi va bu tezlikka turli faktorlarning ta'sirini tekshiradigan ta'limotga kimyoviy kinetika deyiladi. Kimyoviy kinetikaning asosiy maksadi, kimyoviy jarayonda yukori reaksiya tezligini va maksimal mikdorda kerakli maxsulotni olishni boshkarishdan iboratdir.

Kimyoviy reaksiyaning tezligi reaksiyaga kirishuvchi moddalar (yoki ulardan biri) konsentrasiyalarining vakt birligi ichida uzgarishi bilan ulchanadi. Masalan, ∆τ=τ21 vakt birligida reaksiyada ishtirok etayotgan moddalardan bittasining konsentrasiyasi C=C2-C1 kamaysa, u xolda kimyoviy reaksiyaning urtacha tezligi kuyidagicha ifodalanadi:



Konsentrasiya deganda biz xajm birligida bulgan modda mikdorini tushunmogimiz kerak. Masalan, 100 l biror gazga 2 g molekula CO2 aralashgan bulsa, bu xolda CO2 ning konsentrasiyasi 0.002 mol/l buladi. Shunday kilib, kimyoviy reaksiya tezligini ulchashda moddalar konsentrasiyasini molG'l xisobida, vakt birligi esa sekund, minut, soat, sutkalar xisobida olinadi. Reaksiya tezligini topishda reaksiyaga kirishayotgan moddalarning yoki reaksiya maxsulotlarining konsentrasiyalari uzgarishini bilishning farki yuk. Kaysi moddani mikdorini ulchash kulay bulsa, reaksiya tezligi usha modda konsentrasiyasi uzgarishi bilan ulchanadi. Reaksiyaga kirishayotgan moddalarning konsentrasiyalari reaksiya davom etgan sari kamayadi; maxsulotlarniki,aksincha ortib boradi. Kupincha, dastlabki moddalar konsentrasiyalari kamayishidan foydalaniladi. Masalan; agar reaksiyaning tezligi minutiga 0.3 mol/l bulsa, 1 l dagi dastlabki moddaning konsentrasiyasi xar minutiga 0.3 mol kamayadi.

Kimyoviy reaksiyaning tezligi reaksiyaga kirishayotgan moddaning tabiatiga, dastlabki moddalarning konsentrasiyalariga, temperaturasiga, bosimiga, katalizatorning ishtirok etish va etmasligiga, moddalar sirtining katta-kichikligiga, erituvchi tabiatiga, yoruglik ta'siriga va boshka faktorlarga boglik.

Reaksiya tezligiga reaksiyaga kirishayotgan moddalarning konsentrasiyalari katta ta'sir kursatadi. Gomogen (bir jinsli) sistemalar katoriga masalan, gazlar aralashmasi, tuz yoki kand eritmasi (umuman eritmalar) kiradi. Fizikaviy yoki kimyoviy xossalari jixatidan uzaro fark kiladigan va bir-biridan chegara sirtlar bilan ajralgan ikki yoki bir necha kismlardan tuzilgan sistema geterogen (kup jinsli) sistema deb ataladi. Masalan, suv bilan muz uzaro aralashib ketmaydigan ikki suyuklik (bir idishdagi simob va suv) va kattik jismlarning aralashmalari geterogen sistemalardir. Getegeron sistemalarning boshka kismlaridan chegara sirtlar bilan ajralgan gomogen kismi faza deb ataladi. Demak, gomogen sistema bir fazadan, geterogen sistema esa bir necha fazadan iborat ekan.

Reaksiya tezligiga konsentrasiya ta'sir etishining sababi shundaki, moddalar orasida uzaro ta'sir bulishi uchun reaksiyaga kirushuvchi moddalarning zarrachalari bir-biri bilan tuknashadi. Lekin tuknashishlarning xammasi xam kimyoviy reaksiyaga olib kelavermaydi. Barcha tuknashishlarning oz kismigina reaksiyaga olib keladi. Vakt birligi ichida yuz beradigan tuknashishlarning soni uzaro tuknashayotgan zarachalarning konsentrasiyalariga proporsional buladi. Bu son kanchalik katta bulsa, moddalar orasidagi uzaro ta'sir shunchalik kuchli buladi. Ya'ni kimyoviy reaksiya shunchalik tez boradi.

Kimyoviy reaksiyaning tezligi reaksiyaga kirishayotgan moddalarning konsentrasiyalari kupaytmasiga tugri proporsionaldir. Kimyo uchun nixoyatda muxim bulgan bu koida 1867 yilda Norvegiyalik ikkita olim Guldberg xam Vaage tomonidan taklif etilgan bulib, massalar ta'siri konuni deyiladi. Bu konunga muvofik A+B = C reaksiyasi uchun V=K.[A][B] buladi. Bu yerda V- reaksiyaning tezligi (kuzatilgan tezlik), [A] va [B] reaksiyaga kirishayotgan A va B moddalarning mol/l bilan ifodalangan konsentrasiyasi, K tezlik konstantasi. Agar A=V=1 bulsa, V=K buladi. Demak, K- reaksiyaga kirishayotgan moddalarning konsentrasiyalari birga teng bulgandagi tezlik, ya'ni solishtirma tezlikdir. K ning kiymati reagentlarning, ya'ni reaksiyaga kirishayotgan moddalarning tabiatiga, temperaturaga va katalizatorga boglik bulib, konsentrasiyaga boglik emas. Reaksiyaning tezliklari K ning kiymati bilan takkoslanadi.

Agar reagentlarning stexiometrik koeffisiyentlari birdan boshka bulsa, masalan:

aA + bB = cC

uchun massalar ta'siri konunining matematik ifodasi kuyidagicha buladi:

V=K[A]a.[V]v Massalar ta'siri konunidan foydalanib, konsentrasiyaning uzgarishi bilan tezlikni uzgarishini xisoblab topish mumkin. Misol: 2NO+O2=2NO2 reaksiyada aralashmaning xajmi ikki marta kamaytirildi; tezlik kanday uzgaradi?

Yechish: xajmning uzgarishidan oldin, NO va O2 ning konsentrasiyalari a va v ga teng bulsin. Bu xolda: V=K[NO]2[O2] yoki V=Ka2b buladi. Xajmning ikki marta kamayishi natijasida konsentrasiya ikki marta oshadi; endi [NO] urniga 2[NO] va [O2] urniga 2 [O2] olish kerak;

V=K(2a)2(2b)=8Ka2b

demak, tezlik 8 marta oshadi.

Atom va molekulalar galayonlangan xolatga utganida, ularning reaksiyaga kirishish kobilyati kuchayadi. Zarrachalarni galayonlashtirish uchun, masalan, temperaturani oshirish, bosimni kupaytirish, reaksiyaga kirishayotgan moddalarga rentgen nurlari, ultrabinafsha nurlari, gamma nurlar ta'sir ettirish kerak buladi.

Temperatura xar 10°S ga oshganda reaksiyaning tezligi 2-4 marta oshishini dastlab, Vant-Goff tajriba asosida ta'rifladi. Faraz kilaylik, biror reaksiyaning tezligi xar 10°S da 2 marta yoki 100% ortsin. Agar 0°C da reaksiya tezligi 1 ga teng bulsa 10°S da 2 ga. 20°S da 4 ga, 30°S da 8 ga, 40°S da 16 ga 50°S da 32 ga, 60°S da 64 ga, 70°S da 128 ga, 80°S da 256 ga,90°S da 512 ga, 100°S da 1024 ga teng buladi. Demak, temperatura arifmetik progressiya bilan ortib borsa, reaksiya tezligi geometrik progressiya bilan ortadi. Temperatura 100°S ga ortganda reaksiya tezligi 1000 marta ortadi. Agar 0°S dagi tezlikni V0 bilan, t°dagi tezlikni Vt bilan belgilasak, reaksiya tezliginig temperatura bilan uzgarishi

Tenglama bilan ifodalanadi; bu yerda  - temperatura 10°S ga kutarilganda reaksiya tezligini necha marta ortishini kursatuvchi son, reaksiyaning temperatura koeffisiyenti deb ataladi. Reaksiya tezligiga temperatura ta'sir etishini kursatish uchun natriy tiosulfat Na2S2O3 bilan sulfat kislota eritmalari orasida boradigan reaksiyani:

Na2S2O3 + H2SO4 = Na2SO4 + SO2 + S + H2O

20° va 30°S larda utkaziladi. Reaksiyada S chukmasi xosil bulishi sababli eritma loykalanadi. 30° da reaksiya 20°S dagiga karaganda kariyb 2 marta kam vakt ichida tugaydi.

Kimyoviy reaksiya sodir bulishi uchun zarrachalar uzaro tuknashishi kerak. Molekulyar kinetik nazariyaga muvofik, molekulalar orasida buladigan tuknashishlar soni absolyut temperaturaning kvadrat ildiziga tugri proporsionaldir; shunng uchun 10°S da boradigan reaksiyani 20°S da utkazilsa tezlik taxminan 2% ortishi kerak edi. Ammo reaksiya tezligi temperaturaning kutarilishi bilan juda tez ortadi; temperatura 10°S kutarilganda tezlik 100-200 % ga ortadi. Undan tashkari ba'zi moddalar odatdagi temperaturada uzok vakt aralash xolda bulsa xam, ular orasida kimyoviy reaksiya sodir bulmaydi. Lekin aralashma kizdirilsa reaksiya ancha tez boradi. Bunda turli reaksiyalarning tezligi turlicha buladi. Agar molekulalar orasida buladigan xar kaysi tuknashish natijasida kimyoviy reaksiya borsa, barcha reaksiyalar xam tez sodir bulishi kerak edi. Bularning xammasi e'tiborga olinib, massalar ta'siri konuniga kushimcha sifatida, aktivlanish nazariyasi deb ataladigan nazariya kiritildi. U nazariyaga binoan, molekulalar orasidagi buladigan tuknashuvlar natijasida kimyoviy reaksiya vujudga kelavermaydi, fakat ortikcha energiyaga ega bulgan aktiv molekulalar orasidagi tuknashuvlar reaksiyani vujudga keltiradi. Bu nazariyani D.V.Alekseyev, S.Arrenius va boshka olimlar rivojlantirgan.

Demak, xar kaysi tuknashuv natijasida reaksiya bormaydi, fakat aktiv molekulalar orasida tuknashuvlar natijasida reaksiya boradi. Chunki, ikki zarracha uzaro tuknashganda kimyoviy reaksiya sodir bulishi uchun bu zarrachalar orasidagi masofa elektronlar bulutlar bir-birini koplaydigan darajada kichik bulishi kerak. Shu vaktdagina elektronlarning bir-moddadan ikkinchi modaga utishi, yoki kayta gruppalanishi va natijada yangi moddalar xosil bulishi mumkin. Lekin zarrachalar bir-biriga bu kadar yakin masofaga kelishiga ikki zarrachadagi elektron kavatlarning uzaro karshilik kuchlari xalakit beradi. Bu karshilik kuchlarini katta energiyaga ega bulgan aktiv zarrachalar yenga oladi. Aktivmas zarrachalarni aktiv xolatga utkazish uchun energiya talab kilinadi. Aktivmas zarrachalarni aktiv xolatga utkazish uchun, ularga berilishi zarur bulgan kushimcha energiya ayni reaksiyaning aktivlanish energiyasi deyiladi. Aktivlanish energiyasi kkalG'mol xisobida ifodalanadi. Uning son kiymati aktiv molekulalarning urtacha energiyalari bilan dastlabki moddalarning urtacha energiya kiymatlari orasidagi ayirmaga teng.

Masalan, H2 + J2 = 2HJ reaksiyaning aktivlanish energiyasi 40.0 kkal/mol ga tengdir. Reaksiyaning aktivlanish energiyasi kanchalik katta bulsa, reaksiya shuncha sekin boradi.

Aktivlanish energiyasi reaksiyada ishtirok etadigan moddalarning tabiatiga boglik:

a) Agar reaksiyada ishtirok etayotgan ikki modda xam molekulalardan tashkil topgan bulsa, bunday reaksiya uchun aktivlanish energiyasi 20-60 kkal/mol chamasida buladi;

b) Agar reaksiyaga kirishayotgan moddalarning ikkalasi karama-karshi zaryadli ionlar bulsa aktivlanish energiyasi 0-18 kkal/mol buladi;

v) Erkin radikallar ishtirokida boradigan reaksiyalarda aktivlanish energiyasi 0-9 kkal/mol chamasi buladi.

Reaksiya tezligini uzgartiradigan lekin reaksiya natijasida kimyoviy jixatdan uzgarmaydigan modda katalizator deb, katalizator ishtirokida reaksiya tezligining uzgarishi esa kataliz deyiladi. Kataliz gomogen va geterogan bulishi mumkin. Reaksiyaga kirishuvchi moddalar va katalizator bir xil fazada (gaz xolida yoki eritmada) bulsa gomogen kataliz deyiladi. Masalan, nitroza metodining kamera prosessi va minora prosesslari usuli bilan sulfat kislota olishda sulfit angidrid - SO2 xavo kislorodi bilan reaksiyaga kirishib, sulfat angidrid SO3 xosil kiladi. Bu reaksiyada azot (II)-oksid NO katalizatorlik vazifasini utaydi.

Ushbu reaksiyada ishtirok etuvchi moddalar xam gaz xolatida bulib, bir fazani tashkil etadi. Gomogen katalizda katalizatorning ta'siri oralik maxsulotlar xosil bulishi xakidagi nazariya bilan tushuntiriladi, ya'ni katalizator avvalo reaksiya uchun olingan dastlabki moddalarning birontasi bilan reaksiyaga kirishib, mustaxkam bulmagan oralik maxsulot xosil kiladi. Sungra oralik maxsulot reaksiya uchun olingan ikkinchi modda bilan aktiv reaksiyaga kirishib, natijada katalizator kaytarilib – erkin xolda ajralib chikadi.

Reaksiya A+B=AB SO2(g) +1/2O2(g) = SO3(g)

Oralik maxsulot K+B=KB NO(g) + 1/2O2(g) = NO2(g)

Katalizatorning A+KB=AB+K SO2(g) + NO2(g) = SO3(g) + NO(g)

asliga kaytishi
Katalizatorlar kupincha tanlab ta'sir etadi, ya'ni bir reaksiya uchun katalizator vazifasini utaydigan modda, boshka reaksiya uchun katalizator bula olmasligi mumkin. Yana shuni aytib utish kerakki, ishlatilayotgan katalizator turiga karab reaksiya maxsulotlari xar xil bulishi mumkin. Masalan, etil spirtidan AL2O3 va Cu katalizatorlar ishtirokida etilen va asetaldegid olish mumkin:

1) С2N5ON = C2N4 + H2O; 2) C2N5ON = CH3CHO + H2

1.2 reaksiyalardan kurinadiki, AL2O3 katalizatorlari ishtirokida etilen va suv, Cu katalizatori ishtirokida esa asetaldegid xamda erkin xolda H2 ajralib chikadi.

Geterogen katalizda reaksiyaga kirishuvchi moddalar bir fazada, katalizator esa boshka fazada buladi. Masalan, kontakt usuli bilan sulfat kislota olishda sulfat angidrid platina katalizatori ) yoki vanadiy (V) oksidi) ishtirokida kattik faza yuzasida O2 bilan birikib sulfat angidridga aylanadi:

SO2 +1/2 O2 = SO3

Geterogen nazariyasiga kura katalizator yuzasida reaksiyaga kirishuvchi moddalarning konsentrasiyasi ortib, molekulalarning uzaro tuknashuv sonini oshiradi.

Suyuk va kattik modda yuzasiga boshka moddalarning yutilishi adsorbsiya deyiladi. Adsorbsiya xodisasi sirt yuzada bulganligi uchun sirt yuzasi katta bulgan kattik modda yaxshi adsorbent xisoblanadi. Adsorbsiya modda yuzasini xamma joyida emas, balki ayrim nuktalarida boradi. Adsorbsiya boradigan bunday nuktalar aktiv markazlar deyiladi. Aktiv markazlar umumiy yuzaning juda kichik kismini tashkil etadi.

Katalizator sirtiga shimilib, uning aktivligini pasaytiruvchi moddalar katalitik zaxarlar deyiladi. Kattik katalizatorlar oson zaxarlanadi. Masalan, sanoatda juda kup ishlatiladigan platinali katalizatorlarga mo'shyak va selen koldiklari kuchli zaxar sifatida ta'sir kursatadi. Shuning uchun kontakt usulida H2SO4 olishda SO2 va O2 gazlar As va Se koldiklaridan yaxshilab tozalanadi.

Kimyoviy reaksiya tezligini oshiruvchi katalizatorlar (musbat)dan tashkari reaksiya tezligini kamaytiruvchi (manfiy) katalizatorlar xam bor, ular ingibitorlar deyiladi. Ingibitorlar sifatida xinon, gidroxinon va kurgoshin tetraetil va boshka moddalar ishlatiladi. Ular asosan metallar korroziyasini, ozik-ovkat maxsulotlarining (konserva xilidagi) buzilishini, kauchukning oksidlanishini sekinlashtiradi va boshka prosesslarda keng kullaniladi. katalizatorlik xususiyati bulmasa xam, ammo uz ishtiroki bilan katalizatorning aktivligini oshiruvchi moddalar promotorlar deyiladi. Masalan, Fe katalizatoriga ishkoriy va alyuminiy metallarining oksidlarini kushish bilan katalizatorning rolini kuchaytirish mumkin.

Ba'zi reaksiyalar avval sekin borsada, keyin tezlashadi. Bunday reaksiyada xosil bulgan maxsulotlarning biri katalizator rolini uynaydi, natijada reaksiya tezligi ortadi. Bu xodisa avtokataliz deb ataladi. Masalan, murakkab efirning gidrolizlanish prosessida sirka kislotasining dissosilanishidan xosil bulgan vodorod ioni butun prosessga katalitik ta'sir etadi va natijada gidroliz reaksiyasi tezlashadi.

CHCO-O-C2H5 + N2O = C2H5OH + CH3COOH

Suv, Pt, Ni va boshka katalizatorlar kimyoviy reaksiyalarda juda kup kullaniladi. Kislotalarning katalitik ta'sir etish xodisasi rus olimi Kirxgof tomonidan 1811 yilda kashf kilingan. Xozirgi vaktda kataliz soxasi keng rivojlanishi kimyo fanining asosiy bulimlaridan birini tashkil etadi. Kataliz xodisasini rivojlantirishda D.I.Mendeleyev, N.D.Zelinskiy, A.A.Balandik va boshkalar katta xissa kushdilar.

Zanjir reaksiyalar: 1). Aktiv markazlar (zanjirlar)ning xosil bulishi. 2). Reaksiya davomida zanjirlarning usishi. 3). Zanjirlarning uzilishi kabi prosesslarni uz ichiga oladi. Aktiv markazlarning juftlashmagan elektronga ega bulgan elementlarning atomlari, jumladan H',CL',:O:,ON' kabi radikallar xosil kiladi.

Zanjir reaksiyaga HCL ning xosil bulish mexanizmi yakkol misol bula oladi. Reaksiya yoruglik ta'sirida nixoyatda tez ketadi:

H2 + CL2 = 2HCL

Energiya kvanti hφ ning CL2 ga yutilishi natijasida galayonlangan CL atomi radikal xosil buladi. Fotokimyoviy dissosilanish yordamida CL2+hφ =2CL (aktiv markaz xosil buladi)ga aylanadi. Xosil bulgan CL radikali H2 molekulasi bilan oson reaksiyaga kirishadi:

CL’ +H2=HCL + H’ (zanjirning usishi). H uz navbatida CL2 molekulasi bilan oson reaksiyaga kirishib H’ + CL2 = HCL + CL’ (zanjirning usishi) ni xosil kiladi. Agar H+CL= HCL sodir bulsa zanjirda uziladi. Bu tarmoklanmagan zanjir reaksiya shu tarzda davom etadi va ularning soni 100000 gacha yetishi mumkin. Reaksiya reaktorning devorlariga erkin atomlar borib urilguncha davom etadi. Akademik N.N.Semyonov bu soxadagi ishlari uchun Nobel mokofotiga sazovor bulgan.

Tarmoklangan zanjirli reaksiyalarda bitta aktiv zarracha bir necha aktiv zarachalarni xosil kiladi. Bu nazariya akademik N.N.Semyonov tomonidan yaratilgan. Masalan, O2 N2 bilan reaksiyaga kirishganda galayonlangan vodorod molekulasi kislorodga ta'sir etadi va kuyidagi N2+O2=ON’ +ON’ reaksiya sodir buladi. Shundan sung zanjirning tarmoklanishi boshlanadi:

a) OH’ + H2 = H2O + H’

b) H’ + O2 = OH’ + O’

s) O’ + H2 = OH’ + H’ va xokazo.

Oxirgi ikki (b,c) reaksiya shuni kursatadiki, binta erkin radikal bir necha radikal xosil kiladi. Uz navbatida bu radikallarning xar biri zanjirning zvenosini davom ettirishi mumkin. Zanjir usishiga sharoit yaratilganda, zanjirning tarmoklanishi shunday tez boradiki, masalan, yopik xajmda H2 bilan O2 yoki xavo aralashmalarida reaksiya portlash bilan borib, sekundning mingdan bir ulushida tamom buladi.

Elektromagnit nurlanish spektrining kuzga kurinadigan soxalaridagi nurlanish energiyasi ta'sirida boradigan reaksiyalar fotokimyoviy reaksiyalar deyiladi. Masalan, vodorod va ftor gazlarning aralashmasi yoruglikda portlab ketadi. Fotografiyada keng kullaniladigan kumush bromid yoruglikda parchalanib, kumush metali ajralib chikadi. Kupgina buyoklarning rangi kuyosh nuri ta'sirida xiralashadi va xokazo.

Rentgen nurlanish - ultrabinafsha nurning kvantiga nisbatan katta energiyaga ega bulgan fotonlarga ega. Rentgen nurlari bilan nurlanish atomni galayonlantiribgina kolmay, atomdan elektronning ajralishini yuzaga chikarib, ionlanishiga olib keladi. Gamma nurlar juda kiska tulkin uzunlikka ega bulgan elektromagnit nurlanish xisoblanadi. U atom yadrosining radiaktiv yemirilishidan xosil buladi. Bundan tashkari ikki elementar zarracha -elektron va pozitronlarning birikishi natijasida xam xosil buladi: e- + e+ = 2φ. Bu xodisa anigilyasiya xodisasi deyiladi. Gamma nurlanish katta energiyaga ega bulib, moddada yadro uzgarishlarigacha olib keladi.

Barcha kimyoviy reaksiyalarni umuman ikki turga bulish mumkin:

1) Bir yunalishda boradigan kaytmas reaksiyalar

2) Qaytar reaksiyalar.
Kaytmas reaksiyalarda odatda tenglik ishorasi kuyiladi. masalan:

Zn+H2SO4 = ZnSO4 + H2

Qaytar reaksiyalarda, tenglik ishorasi urniga bir-biriga karama-karshi strelkalar kuyiladi. Masalan:

H2 + J2 HJ

Chapdan ungga boradigan reaksiyani tugri reaksiya va ungdan chapga boradigan reaksiyani teskari reaksiya deyiladi. massalar ta'sir konuniga muvofik HJ moddasi uchun muvozanat xolatida tugri va teskari reaksiyalar tezliklari kuyidagicha yoziladi:

V1 = K1[H2][J2] tugri reaksiya tezligi

V2 = K2[HJ]2 teskari reaksiya tezligi

Bu yerda: K1- tugri reaksiya tezlik konstantasi

K2- teskari reaksiya tezlik konstantasi

Reaksiyaning boshlanish davridagi tezligi, reaksiya uchun olingan dastlabki moddalar konsentrasiyalari kupaytmasi bilan aniklanadi, bunda tugri reaksiyaning tezligi maksimal kiymatga ega buladi. Teskari reaksiya tezligi esa 0 ga teng buladi. Tugri reaksiya tezligi vakt utishi bilan kamayadi, chunki H2 va J2 konsentrasiyalari kamayib boradi va HJ maxsulotning konsentrasiyasi ortib boradi, shuning uchun teskari reaksiya tezligi xam ortadi. Nixoyat, shunday bir payt keladiki, bunda V1=V2 buladi va sistemada kimyoviy muvozanat karor topadi. Demak, vakt birligida xosil bulayotgan va parchalanayotgan HJ molekulalarining soni bir biriga teng buladi:

V1=V2 yoki K1[H2][J2]=K2[HJ]2 yoki

K1 va K2 uzgarmas kiymatlar bulgani uchun ularning nisbatlari xam uzgarmas kiymatdir, ya'ni:



bu yerda, K- kimyoviy muvozanat konstantasi deyiladi. Umumiy xolda kaytar reaksiya aA+bB=cC+dD uchun muvozanat konstantasi kuyidagicha



Agar kimyoviy muvozanatda turgan sistemaga, reaksiyada ishtirok etayotgan moddalardan birortasini kushsak, tugri va teskari reaksiya tezliklari uzgaradi, vakt utishi bilan asta-sekin yana muvozanat karor topadi. Yangi muvozanat xolatda reaksiyada ishtirok etayotgan xamma moddalarning konsentrasiyalari dastlabki konsentrasiyalardan fark kiladi, lekin muvozanat konstanta uzgarmay koladi.

Reaksiya muxiti uzgartirilmasa, muvozanat xolat uzgarmaydi. Kimyoviy muvozanatga kuyidagi parametrlar ta'sir etadi.

1) Reaksiyaga kirishuvchi moddalar konsentrasiyasi. 2) temperatura. 3) bosim (gazsimon moddalar bulsa). (Katalizator esa fakat reaksiya tezligini uzgartiradi). Ushbu parametrlarning birortasini uzgarishi kimyoviy muvozanatni siljishiga olib keladi. Tashki faktorlar (bosim, temperatura, moddalar konsentrasiyasi) dan birortasini uzgarishi natijasida muvozanatni kaysi tomonga siljishini Le-Shatelye prinsipi (1884 y) kuyidagicha ifodalaydi; kimyoviy muvozanatda turgan sistemaning biron parametri uzgarsa, kimyoviy muvozanat shu uzgargan parametrga karama-karshi tomonga siljiydi.

Reaksiyaga ta'sir etuvchi faktorlarni kurib chikaylik.

1. Konsentrasiyaning ta'siri. Muvozanatda turgan sistemadagi biron moddaning konsentrasiyasi oshirilsa, kimyoviy modda shu modda sarf bulishi tomonga siljiydi. Masalan, NH3 ni sintez kilishda H2 yoki N2 konsentrasiyalari oshirilsa kimyoviy muvozanat NH3 xosil bulishi tomonga siljiydi, ya'ni tugri reaksiya kuchayadi:

3H2 + N2 = 2NH3

Agar NH3 ning konsentrasiyasini oshirsak, muvozanat H2 va N2 konsentrasiyalari ortadigan tomonga siljiydi:

2NH3 = 3H2 + N2

Demak, muvozanat xolatni ushbu 3H2 + N2 = 2NH3 tenglama shaklida yozish mumkin.

2. Temperaturaning ta'siri. Muvozanatdagi sistemaning temperaturasi oshirilsa, muvozanat endotermik reaksiya tomonga ya'ni issiklik yutilishi bilan boradigan reaksiya tomonga siljiydi. Masalan, yukori temperaturada (1000°) H2 va O2 dan H2O xosil bulish reaksiyasida 2H2+O2=2H2O +Q temperaturani 2000° gacha oshirsak, muvozanat suvning parchalanish reaksiyasi tomoniga siljiydi, chunki bu reaksiya issiklik yutilishi bilan (endotermik) boradi.

3. Bosimning ta'siri. Muvozanatdagi sistemaning bosimi oshirilsa, muvozanat xajm kamayadigan ya'ni molekulalar kam xosil buladigan reaksiya tomonga siljiydi. Masalan, ammiak siyetazi reaksiyasida ishtirok etayotgan gazlar nisbati 1:3:2 dan iborat yoki 3H2 + N2 = 2NH3 ya'ni 4 xajm dastlabki gazlardan ikki xajm maxsulot xosil buladi. Binobarin, bosim oshirilganda muvozanat NH3 xosil bulish reaksiyasi tomonga siljiydi.

Agar tenglamaning chap va ung tomonidagi molekulalar soni teng bulsa bosimning uzgarishi kimyoviy muvozanatga ta'sir etmaydi. Masalan:

CO2 + H2 = CO + H2O

reaksiyasining muvozanati bosim uzgarganida uzgarmay koladi.

Le-Shatelye prinsipi gomogen sistemalargagina kullanib kolmay, geterogen sistemada uchun xam tadbik yotiladi. Masalan, SO2 ning kaytarilish reaksiyasi:

C + CO2 = 2CO -172 kJ

Keltirilgan kimyoviy sistemada kattik (uglerod) va gaz (CO va CO2) fazalar aralashmasi ishtirok etyapti. Demak sistema geterogen. Le-Shatelye prinsipiga kura: a) temperaturaning kutarilishi muvozanatni CO ortishi tomonga siljitadi, chunki CO2 kaytarilishi ekzotermik prosessdir. b) temperaturani pasaytirsak, muvozanat chap tomonga siljiydi; v) bosimni oshirish muvozanatni xajm kamayadigan reaksiya ya'ni CO2 xosil bulishi tomonga siljitadi, chunki chap tomonda gazsimon moddadan bir molekula, ung tomonda esa CO molekulasidan ikki molekula mavjuddir. Bu reaksiya muvozanatining matematik ifodasi kuyidagi kurinishga ega:



ya'ni muvozanat fakat gazsimon moddalarning nisbatlariga (konsentrasiyalariga) boglik.

Geterogen sistemada gazsimon moddalarning molekulalar soni uzgarmasa bosim reaksiya muvozanatiga ta'sir etmaydi. Masalan,

MnO+CO = Mn+CO2

ning muvozanati bosim uzgarishi bilan uzgarmaydi.

Yukori (1000°, 10000°) temperaturalarda kimyoviy reaksiya tezligi shunchalik katta buladiki, amalda ularni aniklab bulmaydi. Bunda moddalar dissosilanishini kuchayishidan tashkari, juda murakkab moddalar xosil buladi va ularning konsentrasiyasi temperatura kutarilishi bilan ortadi. Masalan, V2O5 buglarida V4O10, V4O8, V4O12 kabi moddalar xosil buladi.

Temperatura kancha yukori bulsa elementlar shuncha uziga xos bulmagan oksidlanish darajalarini namoyon etadi. Bunga sabab yukori temperaturadagi buglar xosil bulishida tuyinmagan valentli radikallarning ishtirok etishidir. Masalan, suv bugida 2000° da H2, O2, OH-, H+ va O2- bundan yukori temperaturada esa, ionlanish maxsulotlari ON-, N+ va O2- lar buladi.

Bosimni oshirish gazlarning dissosilanish darajasini kamaytiradi. Masalan, 300000 atmosfera bosimda vodorod metall strukturasiga ega buladi.




Download 1.75 Mb.
1   ...   14   15   16   17   18   19   20   21   ...   41




Download 1.75 Mb.

Bosh sahifa
Aloqalar

    Bosh sahifa



KIMYOVIY KINETIKA VA KIMYOVIY MUVOZANAT

Download 1.75 Mb.