|
Mustaqil yechish uchun masalalar
|
bet | 4/4 | Sana | 15.12.2023 | Hajmi | 1,42 Mb. | | #119143 |
Bog'liq 12-tayorlandi.mMustaqil yechish uchun masalalar:
1-topshiriq. Quyidagi mantiq algebrasi formulalar uchun mantiqiy sxemalar tuzing:
1. (x,y,z)=(x&y& )↔( y)
2. (x,y,z)=( ( ) ↔y
3. (x,y,z)=(x→y)→
4. (x,y,z)=( → )(y→z)
5. (x,y,z)=x(y→z)
6. (x,y,z)= ( ↔ )
7. (x,y,z)=(x↔y)( ↔ )
8. (x,y,z)=(xyz)→xz
9. (x,y,z)=((x→y)(x→yz))(x│y)
10. (x,y,z)=(x→y)((y→ )→xy)
11. (x,y,z)=(x ) │ ( →y→z))
12. α(x,y,z)=( &y)→(z&x)
13. α(x,y,z)=(x&y↔z)&x&
14. α(x,y,z)=(x&y & )&(z→y)
15. α(x,y,z)=(xy )x
16. α(x,y,z)=(x→y)&(z→x)
17. α(x,y,z)=(xz & )&y
18. (x,y,z)=(xy) ((y→ )→xy)
19. (x,y,z)=(x ) (x→(y→z))
20. (x,y,z)=x(y→z) y
2-topshiriq. Quyida keltirilgan misollar uchun rele-kontakt sxemasi keltirilsin, sxema mantiq qonunlari asosida soddalashtirilsin:
1.
|
f(x,y,z)=x&( &yz)&(x )
|
2.
|
f(x,y,z)=( y)&( x&z)
|
3.
|
f(x,y,z)=x&(y↔x)&( )
|
4.
|
f(x,y,z)=( &y)→(z&x)
|
5.
|
f(x,y,z)=(x&y↔z)&x&
|
6.
|
f(x,y,z)= (xz & )&(z→y)
|
7.
|
f(x,y,z)=(xy &z)&x
|
8.
|
f(x,y,z)=(x& &z & )&y
|
9.
|
f(x,y,z)=( y)((y│ )→(x↔xz))
|
10.
|
f(x,y,z)=(x│ )((y│ )→(xz))
|
11.
|
f(x,y,z)=x((yz)( →z))
|
12.
|
f(x,y,z)=(((xy)│ )y)&( →z)
|
13.
|
f(x,y,z)=((xy)│(y ))(x(y→z))
|
14.
|
f(x,y,z)=(xy→z)((x│y)z)
|
15.
|
f(x,y,z)=(x↔y)│(xxy z( )
|
16.
|
f(x,y,z)=( )(x x( )y& )x
|
17.
|
f((x,y,z)=((xy)→(xy))&(( →y)→(xy))
|
18.
|
f(x,y,z)=( )(xyz)
|
19.
|
f(x,y,z)=((xy) →((x↔ ) ))((xy) )
|
20.
|
f(x,y,z)=(( y) (xy))→(z→ )
|
21.
|
f(x,y,z)=( )(((x→z) ↔y)z)
|
22.
|
f(x,y,z)= ( ) z
|
23.
|
f(x,y,z)= ( )→ z
|
24.
|
f(x,y,z)=((xy)z)x) y
|
25.
|
f(x,y,z)=((x→y)(x→yz))(xy)
|
26.
|
f(x,y,z)=(x→y)((y→ )→xy)
|
27.
|
f(x,y,z)=(x ) ( →(y→z))
|
28.
|
f(x,y,z)=x→((y→z)→yz)
|
29.
|
f(x,y,z)=(x(y→z))(xy)
|
30.
|
f(x,y,z)=( )(x↔z))(xyz)
|
3 -topshiriq. Quyidagi rele-kontakt sxemalariga mos keluvchi mulohazalar algebrasining formulasini aniqlang:
2. Quyidagi rele-kontakt sxemalarining ekvivalentligini isbotlang:
3. Quyidagi rele-kontakt sxemalarini soddalashtiring:
|
| |