• Article · December 2023 DOI: 10.30871/jaic.v7i2.6809 CITATIONS 0 READ 1 4 authors
  • Journal of Applied Informatics and Computing (JAIC)
  • *, Mohammad Dahlan Th. Musa 2 **, Saskia Amalia Putri 3 *
  • Article Info ABSTRACT Article history
  • Article · December 23 doi: 10. 30871/jaic v7 6809 citations read authors




    Download 0,75 Mb.
    Pdf ko'rish
    bet1/9
    Sana09.12.2023
    Hajmi0,75 Mb.
    #114189
      1   2   3   4   5   6   7   8   9
    Bog'liq
    01#Повторная калибровка модельного емкостного датчика для измерения влажности почвы IoT



    See discussions, stats, and author profiles for this publication at: 
    https://www.researchgate.net/publication/376189497
    Re-Calibration of Model-Based Capacitive Sensor for IoT Soil Moisture
    Measurements
    Article
    · December 2023
    DOI: 10.30871/jaic.v7i2.6809
    CITATIONS
    0
    READ
    1
    4 authors
    , including:
    Iman Setiawan
    Universitas Tadulako
    21
    PUBLICATIONS
    11
    CITATIONS
    SEE PROFILE
    All content following this page was uploaded by 
    Iman Setiawan
     on 04 December 2023.
    The user has requested enhancement of the downloaded file.


    Journal of Applied Informatics and Computing (JAIC) 
    Vol.7, No.1, December 2023, pp. 150~155 
    e-ISSN: 2548-6861 
    150 

    http://jurnal.polibatam.ac.id/index.php/JAIC  
    Re-Calibration of Model-Based Capacitive Sensor for IoT Soil Moisture 
    Measurements
     
     
    Iman Setiawan
    1
    *, Mohammad Dahlan Th. Musa
    2
    **, Saskia Amalia Putri
    3

    * Statistic Study Program, Tadulako University, Palu, Indonesia
    ** Geophysical Engineering, Tadulako University, Palu, Indonesia 
    npl.untad@gmail.com
    1

    ochad1969@gmail.com
     
    2

    saskia.amalia.putri0108@gmail.com
     
    3
    Article Info 
    ABSTRACT 
    Article history: 
    Received 2023-11-18 
    Revised 2023-11-25 
    Accepted 2023-11-27 
    Low-cost automatic irrigation systems require quality calibrated soil moisture 
    sensors. The sensor is an indirect method of soil moisture measurement. The sensor 
    works based on the change in the dielectric constant. So, it requires to be calibrated 
    in terms of the soil water content. Polynomial and linear models are frequently used 
    to calibrate soil moisture sensor data in the gravimetric test method. However, 
    computational effort is required. This study aims to obtain a sensor calibration 
    application that can provide the best model of the available models for model-based 
    capacitive soil moisture sensor. This research was conducted using primary data 
    from gravimetric test experiment on Internet of things (IoT) based soil moisture 
    sensor. Web-based re-calibration application produced best model based on adjusted 
    R Squared. Finally, model-based capacitive soil moisture sensor set up using best 
    model coefficient. The results show that the web-based re-calibration application 
    can provide the best model for model-based capacitive soil moisture sensor. Based 
    on gravimetric test experiments and web applications, the best model is a polynomial 
    regression model order 3 with 0.945 adjusted R Squared. The model predicted value 
    for soil moisture is in the range 0 – 1.2 for raw sensor data values of 100 – 530. When 
    the model coefficient configured in capacitive soil moisture sensor and Blynk 
    application, soil moisture measurement can be done via mobile phone in real time. 
    Keyword: 
    Calibration, 
    IoT, 
    Polynomial Regression, 
    Soil Moisture Sensor, 
    Regression. 

    Download 0,75 Mb.
      1   2   3   4   5   6   7   8   9




    Download 0,75 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Article · December 23 doi: 10. 30871/jaic v7 6809 citations read authors

    Download 0,75 Mb.
    Pdf ko'rish