• > a:=cos(12*Pi*(log[2](0.25)+log[0.25](2))/5);\\
  • > normal(y/x+1/x^2); \\ > collect(x^2+3*x^2+4*x+4*x+y,x); \\ > simplify(2*a/sqrt(a^2),assume(a > combine((x^(1/2))*x^(3/2)); \\
  • ( x )); > g:=subs(sqrt(x)=a,x^2=a^4,x^(3/2)=a^3,x=a^2,f); > R2 := simplify( (a+1)*(a^4-a)/(a^3+a^2+a), assume=real );
  • > simplify ( cos ( x )^2+ sin ( x )^2); \\1 > expand(cos(x+y)); \\
  • > expand(cos(5*x)); \\
  • Mapleda nomli va nomsiz buyruqlar bajartirilishining ikki XIL o`suli Standart funktsiyalar




    Download 52,59 Kb.
    bet2/2
    Sana29.11.2023
    Hajmi52,59 Kb.
    #107803
    1   2
    Bog'liq
    Maple muhitida hisoblashlar

    Standart funktsiyalar.

    Maple da standart funktsiyalarning ayrimlarini ro’yxatini keltiramiz:





    N

    funktsiya

    Maple da

    N

    funktsiya

    Maple da

    1



    exp(x)

    12

    cosecx

    cosec(x)

    2

    lnx

    ln(x)

    13

    arcsinx

    arcsin(x)

    3

    lgx

    lg10(x)

    14

    arccosx

    arcos(x)

    4



    log[a](x)

    15

    arctgx

    arctg(x)

    5



    sqrt(x)

    16

    arcctgx

    arcctg(x)

    6



    abs(x)

    17

    shx

    sh(x)

    7

    sinx

    sin(x)

    18

    chx

    ch(x)

    8

    cosx

    cos(x)

    19

    thx

    th(x)

    9

    tgx

    tg(x)

    20

    cthx

    cth(x)

    10

    ctgx

    ctg(x)

    21

    -Dirak funktsiyasi

    Dirac(x)

    11

    secx

    sec(x)

    22

    -Xevisayd funktsiyasi

    Heaviside(x)

    Maple ga juda katta miqdorda maxsus funktsiyalar ham kiritilgan. Ular Bessel, Eylerning beta-, gamma-funktsiyalari, xatoliklar integrali, elliptik integrallar, har xil ortogonal ko’phadlar va hokazo. Eyler soni ye=2.718281828…. exp(x) orqali quyidagicha hisoblanadi: exp(1).




    Topshiriq №1.3.
    1. Matnli rejimda Amaliy topshiriq №2 deb yozing.
    2. ni hisoblang.\\(t.10-2-58;j:0;1;-1;0.5;-0.5)
    Komandani 1-to’g’ri o`sul bilan bajaramiz:
    > a:=cos(12*Pi*(log[2](0.25)+log[0.25](2))/5);\\a:=1.
    3. ifodani hisoblang.
    Komandani smart o`sul (o’ngdagi jadval kontekst menyu)bilan bajaramiz:


    >b:=(sin(Pi/8))^2+(cos(3*Pi/8))^2+(sin(5*Pi/8))^2+(cos(7*Pi/8))^2;

    > R3 := evalf[5]( sin(1/8*Pi)^2+cos(3/8*Pi)^2 +sin(3/8*Pi)^2+cos(1/8*Pi)^2 ); \\R3:=2.0000

    Komandani to’g’ri o`sul bilan tekshirib ko’ramiz:




    > simplify(b); \\2

    Ayrim ko’p uchraydigan buyruqlar va ularga doir misollar keltiramiz.








    Komanda

    Ma’nosi

    Parametrlaning ma’nosi

    1

    expand(eq)

    Qavslarni ochib yoyish

    eq-ifoda

    2

    fastor(eq)

    Ko’phadni ko’paytuvchilarga ajratish




    3

    normal(eq)

    Kasrni normal ko’rinishga keltirish




    4

    collect(eq, var)

    O’xshash hadlarni ixchamlash

    var-o’zgaruvchi

    5

    simplify(eq {,option})

    Ifodalarni soddalashtirish

    option-parametr

    6

    combine(eq, param)

    Darajalarni birlashtirish yoki trigonometrik ifodalarni darajalarini pasaytirish

    param=trig,
    param=power,



    7

    radnormal(eq)

    Ildiz, darajali ifodalarni soddalashtirish




    8

    convert(eq,param)

    Ifoda param tipli ifodaga almashtiriladi

    param- tip parametr
    param=sincos, param=tan,
    param=vector, param=string,
    param=termin

    9

    subs(g(x)=t, f)

    f(x) da g(x)=t deb o’zgaruvchini almashtirish






    Topshiriq 1.4.
    1. Qavslarni ochib yoyish.
    >eq:=(x+1)*(x-1)*(x^2-x+1)*( x^2+x+1); \\ >expand(eq); \\x^6-1
    2. Ko’phadni ko’paytuvchilarga ajratish (99-10-7)
    > p:=a^5+a^4-2*a^3-2*a^2+a+1; \\
    >p:=factor(a^5+a^4-2*a^3-2*a^2+a+1);\\
    3. Kasrni normal ko’rinishga keltirish (96-3-74)
    > q:=(x^3+2*x^2+x)/(x+1)^2; \\
    > normal(%); \\ x
    4. Ifodalarni soddalashtirish
    > simplify((a^3-b^3)/(a^2+a*b+b^2)); \\a-b
    > expand((a+b)*(a^2-a*b+b^2)); \\
    > normal(y/x+1/x^2); \\
    > collect(x^2+3*x^2+4*x+4*x+y,x); \\
    > simplify(2*a/sqrt(a^2),assume(a<0)); \\-2
    > combine((x^(1/2))*x^(3/2)); \\
    5. Irratsional ifodalarni ratsionallashtirib soddalashtirish
    > f:=((sqrt(x)+1)/(x*sqrt(x)+x+sqrt(x)))*(x^2-sqrt(x));

    > g:=subs(sqrt(x)=a,x^2=a^4,x^(3/2)=a^3,x=a^2,f);

    > R2 := simplify( (a+1)*(a^4-a)/(a^3+a^2+a), 'assume=real' );

    Oldingi o’zgaruvchiga qaytib x-1 javobni olamiz.
    6. Trigonometrik ifodalarni soddalashtirish
    > simplify(cos(x)^2+sin(x)^2); \\1
    > expand(cos(x+y)); \\cos(x)cos(y)-sin(x)sin(y)
    > expand(cos(2*x)); \\
    > expand(sin(2*x)); \\ 2sin(x)cos(x)
    > combine(4*cos(x)^3); \\ cos(3x)+3cos(x)
    > combine(8*sin(x)^4); \\ 3+cos(4x)-4cos(2x)
    > expand(cos(5*x)); \\
    >combine(4*sin(x)^3,trig); \\-sin(3x)+3sin(x)
    7. Ildiz, darajali ifodalarni soddalashtirish
    > a:=sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3)):
    > a1:=radnormal(a);\\
    8.> b:=(m^2-(2+m^4)/(m^2-1))/((m^2+2)/(m-1)):
    > b1:=simplify(b);\\b1:=-1/(m+1).
    9. > c:=(a^(3/2)-b^(3/2))/(a^(1/2)-b^(1/2))-(a^(3/2)+b^(3/2))/(a^(1/2)+b^(1/2));

    > c1:=simplify(c); \\
    > a:=8*sqrt(2):b:=4*sqrt(2):
    > c1:=simplify(c); \\c1:=16
    10. > a:=(sqrt(192)-sqrt(108)+sqrt(243)/3);\\ (99-6-36)
    Download 52,59 Kb.
    1   2




    Download 52,59 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Mapleda nomli va nomsiz buyruqlar bajartirilishining ikki XIL o`suli Standart funktsiyalar

    Download 52,59 Kb.