• Toshkent – 2024 “Kriptografiya 2” fani bo‘yicha loyiha ishi topshirig’i
  • Muhammad al-xorazmiy nomidagi toshkent axborot texnologiyalar universiteti kriptografiya 2 fanidan




    Download 1,54 Mb.
    Sana21.05.2024
    Hajmi1,54 Mb.
    #247633

    O’ZBEKISTON RESPUBLIKASI RAQAMLI TEXNOLOGIYALAR VAZIRLIGI
    MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALAR UNIVERSITETI

    Kriptografiya 2 fanidan
    Loyiha ishi

    Guruh: CRO002.

    Bajardi: Jumaboyev Faxriyor, Matyoqubov Yusufboy, Muxammadiyev Komil, Normengliyev Boymurod.

    Tekshirdi: Mardiyev Ulug’bek.




    Toshkent – 2024

    Kriptografiya 2” fani bo‘yicha loyiha ishi topshirig’i


    Loyiha ishi bo‘yicha barcha talabalar guruhlarga ajralib mavjud shifrlash algoritmlaridan birontasini tanlab olgan holda IBM ning virtual kvant laboratoriyasidan foydalangan holda hisoblash tezligi bo‘yicha tahlil amalga oshirlari zarur bo‘ladi ( https://quantum.ibm.com/ )
    Ro’yxatdan o’tib olish qismi. Bunda bizga IBMid kerak bo’ladi.



    1-rasm.Foydalanish qonun-qoidalari.

    2-rasm. IBM quantum saytining bosh sahifasi

    3-rasm. O’rganish uchun shartli belgilarni ishlatilishi.
    Bu yerdan yangi fayl yuklab ishlatib ko’rishimiz mumkin. Asosan python tilida yozilgan kodni tahlil qilib natija chiqarib beradi.
    4-rasm. Vertual quantum laboratoriya.

    5-rasm. Dasturni kodini tashlash va tekshirish

    #!/usr/bin/env python3


    s_box = (
    )
    def sub_bytes(s):
    for i in range(4):
    for j in range(4):
    s[i][j] = s_box[s[i][j]]
    def inv_sub_bytes(s):
    for i in range(4):
    for j in range(4):
    s[i][j] = inv_s_box[s[i][j]]
    def shift_rows(s):
    s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1]
    s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
    s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3]
    def inv_shift_rows(s):
    s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1]
    s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]
    s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3]
    def add_round_key(s, k):
    for i in range(4):
    for j in range(4):
    s[i][j] ^= k[i][j]

    # learned from https://web.archive.org/web/20100626212235/http://cs.ucsb.edu/~koc/cs178/projects/JT/aes.c


    xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)
    def mix_single_column(a):
    # see Sec 4.1.2 in The Design of Rijndael
    t = a[0] ^ a[1] ^ a[2] ^ a[3]
    u = a[0]
    a[0] ^= t ^ xtime(a[0] ^ a[1])
    a[1] ^= t ^ xtime(a[1] ^ a[2])
    a[2] ^= t ^ xtime(a[2] ^ a[3])
    a[3] ^= t ^ xtime(a[3] ^ u)
    def mix_columns(s):
    for i in range(4):
    mix_single_column(s[i])
    def inv_mix_columns(s):
    # see Sec 4.1.3 in The Design of Rijndael
    for i in range(4):
    u = xtime(xtime(s[i][0] ^ s[i][2]))
    v = xtime(xtime(s[i][1] ^ s[i][3]))
    s[i][0] ^= u
    s[i][1] ^= v
    s[i][2] ^= u
    s[i][3] ^= v

    mix_columns(s)


    r_con = (
    0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
    0x80, 0x1B, 0x36, 0x6C, 0xD8, 0xAB, 0x4D, 0x9A,
    0x2F, 0x5E, 0xBC, 0x63, 0xC6, 0x97, 0x35, 0x6A,
    0xD4, 0xB3, 0x7D, 0xFA, 0xEF, 0xC5, 0x91, 0x39,
    )
    def bytes2matrix(text):
    """ Converts a 16-byte array into a 4x4 matrix. """
    return [list(text[i:i+4]) for i in range(0, len(text), 4)]
    def matrix2bytes(matrix):
    """ Converts a 4x4 matrix into a 16-byte array. """
    return bytes(sum(matrix, []))
    def xor_bytes(a, b):
    """ Returns a new byte array with the elements xor'ed. """
    return bytes(i^j for i, j in zip(a, b))
    def inc_bytes(a):
    """ Returns a new byte array with the value increment by 1 """
    out = list(a)
    for i in reversed(range(len(out))):
    if out[i] == 0xFF:
    out[i] = 0
    else:
    out[i] += 1
    break
    return bytes(out)

    def pad(plaintext):


    """
    Pads the given plaintext with PKCS#7 padding to a multiple of 16 bytes.
    Note that if the plaintext size is a multiple of 16,
    a whole block will be added.
    """
    padding_len = 16 - (len(plaintext) % 16)
    padding = bytes([padding_len] * padding_len)
    return plaintext + padding
    def unpad(plaintext):
    """
    Removes a PKCS#7 padding, returning the unpadded text and ensuring the
    padding was correct.
    """
    padding_len = plaintext[-1]
    assert padding_len > 0
    message, padding = plaintext[:-padding_len], plaintext[-padding_len:]
    assert all(p == padding_len for p in padding)
    return message

    def split_blocks(message, block_size=16, require_padding=True):


    assert len(message) % block_size == 0 or not require_padding
    return [message[i:i+16] for i in range(0, len(message), block_size)]

    class AES:


    """
    Class for AES-128 encryption with CBC mode and PKCS#7.
    This is a raw implementation of AES, without key stretching or IV
    management. Unless you need that, please use `encrypt` and `decrypt`.
    """
    rounds_by_key_size = {16: 10, 24: 12, 32: 14}
    def __init__(self, master_key):
    """
    Initializes the object with a given key.
    """
    assert len(master_key) in AES.rounds_by_key_size
    self.n_rounds = AES.rounds_by_key_size[len(master_key)]
    self._key_matrices = self._expand_key(master_key)

    def _expand_key(self, master_key):


    """
    Expands and returns a list of key matrices for the given master_key.
    """
    # Initialize round keys with raw key material.
    key_columns = bytes2matrix(master_key)
    iteration_size = len(master_key) // 4
    i = 1
    while len(key_columns) < (self.n_rounds + 1) * 4:
    # Copy previous word.
    word = list(key_columns[-1])

    # Perform schedule_core once every "row".


    if len(key_columns) % iteration_size == 0:
    # Circular shift.
    word.append(word.pop(0))
    # Map to S-BOX.
    word = [s_box[b] for b in word]
    # XOR with first byte of R-CON, since the others bytes of R-CON are 0.
    word[0] ^= r_con[i]
    i += 1
    elif len(master_key) == 32 and len(key_columns) % iteration_size == 4:
    # Run word through S-box in the fourth iteration when using a
    # 256-bit key.
    word = [s_box[b] for b in word]

    # XOR with equivalent word from previous iteration.


    word = xor_bytes(word, key_columns[-iteration_size])
    key_columns.append(word)

    # Group key words in 4x4 byte matrices.


    return [key_columns[4*i : 4*(i+1)] for i in range(len(key_columns) // 4)]

    def encrypt_block(self, plaintext):


    """
    Encrypts a single block of 16 byte long plaintext.
    """
    assert len(plaintext) == 16
    plain_state = bytes2matrix(plaintext)
    add_round_key(plain_state, self._key_matrices[0])
    for i in range(1, self.n_rounds):
    sub_bytes(plain_state)
    shift_rows(plain_state)
    mix_columns(plain_state)
    add_round_key(plain_state, self._key_matrices[i])

    sub_bytes(plain_state)


    shift_rows(plain_state)
    add_round_key(plain_state, self._key_matrices[-1])
    return matrix2bytes(plain_state)
    def decrypt_block(self, ciphertext):
    """
    Decrypts a single block of 16 byte long ciphertext.
    """
    assert len(ciphertext) == 16
    cipher_state = bytes2matrix(ciphertext)
    add_round_key(cipher_state, self._key_matrices[-1])
    inv_shift_rows(cipher_state)
    inv_sub_bytes(cipher_state)

    for i in range(self.n_rounds - 1, 0, -1):


    add_round_key(cipher_state, self._key_matrices[i])
    inv_mix_columns(cipher_state)
    inv_shift_rows(cipher_state)
    inv_sub_bytes(cipher_state)
    add_round_key(cipher_state, self._key_matrices[0])
    return matrix2bytes(cipher_state)

    def encrypt_cbc(self, plaintext, iv):


    """
    Encrypts `plaintext` using CBC mode and PKCS#7 padding, with the given
    initialization vector (iv).
    """
    assert len(iv) == 16

    plaintext = pad(plaintext)

    blocks = []
    previous = iv
    for plaintext_block in split_blocks(plaintext):
    # CBC mode encrypt: encrypt(plaintext_block XOR previous)
    block = self.encrypt_block(xor_bytes(plaintext_block, previous))
    blocks.append(block)
    previous = block
    return b''.join(blocks)
    def decrypt_cbc(self, ciphertext, iv):
    """
    Decrypts `ciphertext` using CBC mode and PKCS#7 padding, with the given
    initialization vector (iv).
    """
    assert len(iv) == 16

    blocks = []


    previous = iv
    for ciphertext_block in split_blocks(ciphertext):
    # CBC mode decrypt: previous XOR decrypt(ciphertext)
    blocks.append(xor_bytes(previous, self.decrypt_block(ciphertext_block)))
    previous = ciphertext_block
    return unpad(b''.join(blocks))
    def encrypt_pcbc(self, plaintext, iv):
    """
    Encrypts `plaintext` using PCBC mode and PKCS#7 padding, with the given
    initialization vector (iv).
    """
    assert len(iv) == 16
    plaintext = pad(plaintext)
    blocks = []
    prev_ciphertext = iv
    prev_plaintext = bytes(16)
    for plaintext_block in split_blocks(plaintext):
    # PCBC mode encrypt: encrypt(plaintext_block XOR (prev_ciphertext XOR prev_plaintext))
    ciphertext_block = self.encrypt_block(xor_bytes(plaintext_block, xor_bytes(prev_ciphertext, prev_plaintext)))
    blocks.append(ciphertext_block)
    prev_ciphertext = ciphertext_block
    prev_plaintext = plaintext_block
    return b''.join(blocks)
    def decrypt_pcbc(self, ciphertext, iv):
    """
    Decrypts `ciphertext` using PCBC mode and PKCS#7 padding, with the given
    initialization vector (iv).
    """
    assert len(iv) == 16
    blocks = []
    prev_ciphertext = iv
    prev_plaintext = bytes(16)
    for ciphertext_block in split_blocks(ciphertext):
    # PCBC mode decrypt: (prev_plaintext XOR prev_ciphertext) XOR decrypt(ciphertext_block)
    plaintext_block = xor_bytes(xor_bytes(prev_ciphertext, prev_plaintext), self.decrypt_block(ciphertext_block))
    blocks.append(plaintext_block)
    prev_ciphertext = ciphertext_block
    prev_plaintext = plaintext_block

    return unpad(b''.join(blocks))

    def encrypt_cfb(self, plaintext, iv):
    """
    Encrypts `plaintext` with the given initialization vector (iv).
    """
    assert len(iv) == 16
    blocks = []
    prev_ciphertext = iv
    for plaintext_block in split_blocks(plaintext, require_padding=False):
    # CFB mode encrypt: plaintext_block XOR encrypt(prev_ciphertext)
    ciphertext_block = xor_bytes(plaintext_block, self.encrypt_block(prev_ciphertext))
    blocks.append(ciphertext_block)
    prev_ciphertext = ciphertext_block

    return b''.join(blocks)


    def decrypt_cfb(self, ciphertext, iv):
    """
    Decrypts `ciphertext` with the given initialization vector (iv).
    """
    assert len(iv) == 16

    blocks = []


    prev_ciphertext = iv
    for ciphertext_block in split_blocks(ciphertext, require_padding=False):
    # CFB mode decrypt: ciphertext XOR decrypt(prev_ciphertext)
    plaintext_block = xor_bytes(ciphertext_block, self.encrypt_block(prev_ciphertext))
    blocks.append(plaintext_block)
    prev_ciphertext = ciphertext_block
    return b''.join(blocks)
    def encrypt_ofb(self, plaintext, iv):
    """
    Encrypts `plaintext` using OFB mode initialization vector (iv).
    """
    assert len(iv) == 16
    blocks = []
    previous = iv
    for plaintext_block in split_blocks(plaintext, require_padding=False):
    # OFB mode encrypt: plaintext_block XOR encrypt(previous)
    block = self.encrypt_block(previous)
    ciphertext_block = xor_bytes(plaintext_block, block)
    blocks.append(ciphertext_block)
    previous = block
    return b''.join(blocks)

    def decrypt_ofb(self, ciphertext, iv):


    """
    Decrypts `ciphertext` using OFB mode initialization vector (iv).
    """
    assert len(iv) == 16
    blocks = []
    previous = iv
    for ciphertext_block in split_blocks(ciphertext, require_padding=False):
    # OFB mode decrypt: ciphertext XOR encrypt(previous)
    block = self.encrypt_block(previous)
    plaintext_block = xor_bytes(ciphertext_block, block)
    blocks.append(plaintext_block)
    previous = block
    return b''.join(blocks)
    def encrypt_ctr(self, plaintext, iv):
    """
    Encrypts `plaintext` using CTR mode with the given nounce/IV.
    """
    assert len(iv) == 16
    blocks = []
    nonce = iv
    for plaintext_block in split_blocks(plaintext, require_padding=False):
    # CTR mode encrypt: plaintext_block XOR encrypt(nonce)
    block = xor_bytes(plaintext_block, self.encrypt_block(nonce))
    blocks.append(block)
    nonce = inc_bytes(nonce)
    return b''.join(blocks)

    def decrypt_ctr(self, ciphertext, iv):


    """
    Decrypts `ciphertext` using CTR mode with the given nounce/IV.
    """
    assert len(iv) == 16

    blocks = []


    nonce = iv
    for ciphertext_block in split_blocks(ciphertext, require_padding=False):
    # CTR mode decrypt: ciphertext XOR encrypt(nonce)
    block = xor_bytes(ciphertext_block, self.encrypt_block(nonce))
    blocks.append(block)
    nonce = inc_bytes(nonce)

    return b''.join(blocks)


    import os
    from hashlib import pbkdf2_hmac
    from hmac import new as new_hmac, compare_digest

    AES_KEY_SIZE = 16


    HMAC_KEY_SIZE = 16
    IV_SIZE = 16
    SALT_SIZE = 16
    HMAC_SIZE = 32

    def get_key_iv(password, salt, workload=100000):


    """
    Stretches the password and extracts an AES key, an HMAC key and an AES
    initialization vector.
    """
    stretched = pbkdf2_hmac('sha256', password, salt, workload, AES_KEY_SIZE + IV_SIZE + HMAC_KEY_SIZE)
    aes_key, stretched = stretched[:AES_KEY_SIZE], stretched[AES_KEY_SIZE:]
    hmac_key, stretched = stretched[:HMAC_KEY_SIZE], stretched[HMAC_KEY_SIZE:]
    iv = stretched[:IV_SIZE]
    return aes_key, hmac_key, iv
    def encrypt(key, plaintext, workload=100000):
    """
    Encrypts `plaintext` with `key` using AES-128, an HMAC to verify integrity,
    and PBKDF2 to stretch the given key.

    The exact algorithm is specified in the module docstring.


    """
    if isinstance(key, str):
    key = key.encode('utf-8')
    if isinstance(plaintext, str):
    plaintext = plaintext.encode('utf-8')

    salt = os.urandom(SALT_SIZE)


    key, hmac_key, iv = get_key_iv(key, salt, workload)
    ciphertext = AES(key).encrypt_cbc(plaintext, iv)
    hmac = new_hmac(hmac_key, salt + ciphertext, 'sha256').digest()
    assert len(hmac) == HMAC_SIZE

    return hmac + salt + ciphertext


    def decrypt(key, ciphertext, workload=100000):


    """
    Decrypts `ciphertext` with `key` using AES-128, an HMAC to verify integrity,
    and PBKDF2 to stretch the given key.

    The exact algorithm is specified in the module docstring.


    """

    assert len(ciphertext) % 16 == 0, "Ciphertext must be made of full 16-byte blocks."

    assert len(ciphertext) >= 32, """
    Ciphertext must be at least 32 bytes long (16 byte salt + 16 byte block). To
    encrypt or decrypt single blocks use `AES(key).decrypt_block(ciphertext)`.
    """

    if isinstance(key, str):


    key = key.encode('utf-8')
    hmac, ciphertext = ciphertext[:HMAC_SIZE], ciphertext[HMAC_SIZE:]
    salt, ciphertext = ciphertext[:SALT_SIZE], ciphertext[SALT_SIZE:]
    key, hmac_key, iv = get_key_iv(key, salt, workload)

    expected_hmac = new_hmac(hmac_key, salt + ciphertext, 'sha256').digest()


    assert compare_digest(hmac, expected_hmac), 'Ciphertext corrupted or tampered.'

    return AES(key).decrypt_cbc(ciphertext, iv)


    def benchmark():


    key = b'P' * 16
    message = b'M' * 16
    aes = AES(key)
    for i in range(30000):
    aes.encrypt_block(message)
    __all__ = ["encrypt", "decrypt", "AES"]

    if __name__ == '__main__':


    import sys
    write = lambda b: sys.stdout.buffer.write(b)
    read = lambda: sys.stdin.buffer.read()

    if len(sys.argv) < 2:


    print('Usage: ./aes.py encrypt "key" "message"')
    print('Running tests...')
    from tests import *
    run()
    elif len(sys.argv) == 2 and sys.argv[1] == 'benchmark':
    benchmark()
    exit()
    elif len(sys.argv) == 3:
    text = read()
    elif len(sys.argv) > 3:
    text = ' '.join(sys.argv[2:])

    if 'encrypt'.startswith(sys.argv[1]):


    write(encrypt(sys.argv[2], text))
    elif 'decrypt'.startswith(sys.argv[1]):
    write(decrypt(sys.argv[2], text))
    else:
    print('Expected command "encrypt" or "decrypt" in first argument.')
    # encrypt('my secret key', b'0' * 1000000) # 1 MB encrypted in 20 seconds.
    Download 1,54 Mb.




    Download 1,54 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Muhammad al-xorazmiy nomidagi toshkent axborot texnologiyalar universiteti kriptografiya 2 fanidan

    Download 1,54 Mb.