• THE IMPORTANCE OF INFRARED SENSORS IN PREVENTING FIRE SAFETY IN PRODUCTION ENTERPRISES X.B.Madaliyev
  • Namangan Institute of Engineering and Technology nammti.uz 10.25.2023 Pg.373 Abstract.
  • Keywords
  • Использованная литература




    Download 15,56 Mb.
    Pdf ko'rish
    bet400/693
    Sana13.05.2024
    Hajmi15,56 Mb.
    #228860
    1   ...   396   397   398   399   400   401   402   403   ...   693
    Bog'liq
    Тўплам

    Использованная литература 
    1.
    Groover, M. P. (2017). Automation, Production Systems, and Computer-Integrated 
    Manufacturing. Pearson. 
    2.
    Galloway, T. L., & Karmakar, N. (2016). Industrial Automation and Control System Security 
    Principles. CRC Press. 
    3.
    Sheng, W., Zhang, W., & Tsai, P. (2014). Manufacturing execution system: A framework 
    for cloud-based automated manufacturing. Journal of Manufacturing Systems, 33(4), 546-554. 
    THE IMPORTANCE OF INFRARED SENSORS IN PREVENTING FIRE SAFETY IN PRODUCTION 
    ENTERPRISES 
     
    X.B.Madaliyev 
    Namangan Institute of Engineering and Technology 


    Namangan Institute of Engineering and Technology 
    nammti.uz 
    10.25.2023
    Pg.373 
    Abstract. Artificial intelligence (AI) technologies are rapidly transforming the textile industry, 
    including in the area of quality control. AI-powered systems can be used to automate and improve 
    the accuracy of quality testing, leading to significant benefits for textile manufacturers.This article 
    reviews the use of AI technologies in the determination and analysis of quality indicators of textile 
    materials. It discusses the different types of AI methods that can be used, as well as the specific 
    applications of AI in quality control. The article also highlights the challenges and opportunities in 
    the use of AI for textile quality control. 
    Keywords: artificial intelligence, textile quality control, quality indicators, machine learning, 
    deep learning, image processing 
    Introduction.The textile industry is one of the oldest and most important industries in the 
    world. Textile materials are used in a wide range of products, from clothing and home furnishings 
    to industrial applications. The quality of textile materials is essential for the performance and 
    durability of these products. 
    Traditional textile quality control methods are often time-consuming and labor-intensive. 
    They also rely on human experts to interpret the results of tests. This can lead to errors and 
    inconsistencies. AI technologies offer a promising solution for improving the efficiency and accuracy 
    of textile quality control. 
    There are a variety of AI technologies that can be used for textile quality control. Some of the 
    most common methods include: 

    Machine learning: Machine learning algorithms can be trained on large datasets of textile 
    quality data to learn to identify patterns and make predictions. For example, machine learning 
    algorithms can be used to predict the tensile strength of a fabric based on its fiber composition and 
    weave structure. 

    Deep learning: Deep learning is a type of machine learning that uses artificial neural 
    networks to learn from data. Deep learning algorithms can be used to solve complex problems that 
    are difficult or impossible to solve using traditional machine learning algorithms. For example, deep 
    learning algorithms can be used to classify textile defects from images. 

    Image processing: Image processing techniques can be used to extract information from 
    textile images, such as fiber orientation, yarn count, and fabric weave structure. This information 
    can then be used to assess the quality of the textile material. 
    Applications of AI in Textile Quality Control 
    AI technologies can be used in a variety of ways to improve textile quality control. Some of 
    the specific applications include: 

    Automated defect detection: AI-powered systems can be used to automatically detect 
    defects in textile materials, such as broken yarns, holes, and stains. This can help to reduce the 
    number of defective products that reach the market. 

    Quality prediction: AI-powered systems can be used to predict the quality of textile materials 
    based on their properties. This information can be used to optimize the production process and 
    ensure that products meet quality standards. 

    Process monitoring: AI-powered systems can be used to monitor the textile production 
    process and identify potential quality problems. This can help to prevent defects from occurring in 
    the first place. 

    Download 15,56 Mb.
    1   ...   396   397   398   399   400   401   402   403   ...   693




    Download 15,56 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Использованная литература

    Download 15,56 Mb.
    Pdf ko'rish