• Mashinali o‘qitishda Logistik regressiya yordamida sinflashtirish masalasini yechish algoritmi va dasturini tuzish.
  • Nomidagi toshkent axborot texnologiyalari universiteti mashinali




    Download 67,89 Kb.
    Sana27.07.2024
    Hajmi67,89 Kb.
    #268819
    Bog'liq
    Mashinali o’qitish2

    O‘ZBEKISTON RESPUBLIKASI RAQAMLI TEXNOLOGIYALAR VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI


    TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI
    Mashinali o’qitishga kirish fanidan
    2-Amaliy ish

    Guruh: 711-21 guruh


    Bajardi: Baxtiyorov Sh
    Tekshirdi: Azimov B

    TOSHKENT 2024


    Mashinali o‘qitishda Logistik regressiya yordamida sinflashtirish masalasini yechish algoritmi va dasturini tuzish.


    1. Dataset ni xosil qilish. Bunda o‘zgaruvchilar soni kamida 10 tani va qatorlar soni 20 tani tashkil etishi lozim.

    Data.csv id,ScreenSize_inch,Price,Weight_gr,sinf 0,14,1200,1000,1


    1,13,800,900,1

    2,16,200,1300,0


    3,20,300,2000,0


    4,17,500,1200,1


    5,14,100,1000,0


    6,18,150,3000,0


    7,14,800,800,1


    8,15,700,1000,1


    9,16,500,1100,1


    10,12,400,1500,0


    11,19,1000,1800,1


    12,15,600,900,1


    13,13,300,800,0


    14,16,120,700,0


    15,18,900,1600,1


    16,14,350,1200,0

    17,15,550,1000,1


    18,17,750,1400,1


    19,20,1100,2200,1


    Code :


    import pandas as pd


    from sklearn.model_selection import train_test_split from sklearn.svm import SVC
    from sklearn.metrics import accuracy_score, confusion_matrix import seaborn as sns
    import matplotlib.pyplot as plt

    # CSV faylini o'qish


    data = pd.read_csv('data.csv')

    # X va y larni ajratib olish X = data.drop('sinf', axis=1) y = data['sinf']


    # Ma'lumotlarni trenirovka va test qismiga ajratib olish X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


    # Support Vector Machine (SVM) modelini yaratish va o'qitish model = SVC(kernel='linear', C=1)


    model.fit(X_train, y_train)

    # Test ma'lumotlari uchun bashorat y_pred = model.predict(X_test)


    # Aniqlikni hisoblash


    accuracy = accuracy_score(y_test, y_pred)
    print(f'Test ma\'lumotlari uchun aniqlik: {accuracy:.4f}')

    plt.scatter(data['ScreenSize_inch'], data['Price'], c=data['sinf'], cmap='viridis')


    plt.title('Nuqtalar') plt.xlabel('ScreenSize_inch') plt.ylabel('Price') plt.show()

    # Konfuziya matricasini o'qish va ko'rsatish cm = confusion_matrix(y_test, y_pred)


    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['0', '1'], yticklabels=['0', '1']) plt.ylabel('Haqiqiy natijalar') plt.xlabel('Bashorat natijalari') plt.title('Confusion Matrix')
    plt.show()

    Natija:






    Download 67,89 Kb.




    Download 67,89 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Nomidagi toshkent axborot texnologiyalari universiteti mashinali

    Download 67,89 Kb.