O‘quv yilidа umumta’lim




Download 1,53 Mb.
bet3/5
Sana15.05.2024
Hajmi1,53 Mb.
#234497
1   2   3   4   5
Bog'liq
11-sinf Matematika imtihon savollari

A
𝑦 = 𝗑

B
𝑦 = 𝟑𝟑𝗑

C
𝑦 = 𝟐𝟐 − 𝗑

D
𝑦 = |𝗑|

E
𝑦 = 𝗑𝟐𝟐 − 𝟐𝟐𝗑


1

2

3

4
















  1. Berilgan grafiklarni funksiyalarga moslashtiring:




1






2






3





4





A
𝑦 = −𝗑𝟐𝟐

B
𝑦 = 𝟐𝟐𝗑

C
𝑦 = −𝗑 − 𝟐𝟐

D
𝟑𝟑
𝑦 = − 𝗑

E
𝑦 = |𝗑 − 𝟏𝟏|


1

2

3

4
















  1. Berilgan grafiklarni funksiyalarga moslashtiring:

1






2






3






4







A
𝑦 = 𝟓𝟓𝗑

B
𝑦 = (𝗑 − 𝟐𝟐)𝟐𝟐

C
𝑦 = 𝐥𝐥𝐥𝐥𝐥𝐥𝟓𝟓 𝗑

D
𝑦 = 𝟑𝟑𝗑

E
𝑦 = |𝗑 + 𝟐𝟐|


1

2

3

4
















  1. Berilgan grafiklarni funksiyalarga moslashtiring:




1

2




3

4







A
𝑦 = 𝟔𝟔𝗑

B
𝑦 = −𝟏𝟏 − 𝗑𝟐𝟐

C



𝑦 = √𝗑 − 𝟐𝟐

D
𝑦 = −𝗑 + 𝟑𝟑

E
𝑦 = −|𝗑|




1

2

3

4
















  1. Berilgan grafiklarni funksiyalarga moslashtiring:

1



2

3


4







A



𝑦 = √𝗑 − 𝟐𝟐

B
𝑦 = 𝟓𝟓𝗑

C
𝑦 = 𝗑𝟑𝟑

D
𝑦 = 𝟐𝟐 − 𝗑

E
𝑦 = −𝗑𝟐𝟐



1

2

3

4












  1. savol


  1. Tenglamani yeching: 5𝑥2−6 − 125 = 0


  1. Ushbu log

toping.
2(𝑥 − 4) = 2 logarifmik tenglamaning ildizi 𝑥0
bo‘lsa, 𝑥0+2 ning qiymatini
2




  1. Tenglamani yeching: 2𝑠𝑠𝑠𝑛2𝑥 + 1 = 1


  1. Tenglamani yeching: log3 𝑥 + 1 = log2 8




  1. Tenglamani yeching: 4𝑥 = 8




  1. Tengsizlikni yeching: 92𝑥−1 − 81 < 0




  1. Ushbu log3 𝑥 > 1 logarifmik tengsizlikni yeching.

  1. Trigonometrik tengsizlikni yeching: −𝐶𝑜𝑠𝑥 ≤ −0,5


  1. Tengsizlikni yeching: 3 ∙ 12𝑥 ≤ 36




  1. Tengsizlikni yeching: 1 + 2𝑙𝑔𝑥 > 0



  1. savol


  1. Ushbu 𝑦 = 𝑥3 , 𝑦 = 0 , 𝑥 = 1 va 𝑥 = 2 chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzini (kv.birlik) toping.

A) 8 B) 4 C) 1 1
2
D) 3 3
4

  1. Quyidagi rasmda, 𝑦 = 𝑥2 + 2𝑥 − 3 parabola grafigi tasvirlangan. Grafikdan foydalanib, Ox o‘qi va parabola bilan chegaralangan sohani yuzini (kv.birlik) toping.



A) 12 B) 11 C) 32
3
D) 35
3


  1. Ushbu 𝑦 = 2𝑥2, 𝑦 = 0 va 𝑥 = 3 chiziqlar bilan chegaralangan figuraning yuzi necha kvadrat birlik bo‘ladi?

A) 18 B) 27 C) 54 D) 36



  1. Quyidagi chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzini (kv.birlik) toping.

𝑦 = 1
𝑥
, 𝑦 = 0, 𝑥 = 1, 𝑥 = 4

A) 5 B) 2 C) 3 D) 1



  1. Quyidagi rasmda, 𝑦 = 3𝑥

funksiya grafigi tasvirlangan. Grafikdan foydalanib,

𝑦 = 0, 𝑦 = 3𝑥, 𝑥 = 0 va 𝑥 = 8 chiziqlar chegaralangan sohani yuzini (kv.birlik)

toping.
A) 9 B) 15 C) 12 D) 18



  1. Ushbu 𝑦 = 𝑥3 − 1, 𝑦 = 0, 𝑥 = 1va 𝑥 = 3 chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzini (kv.birlik) toping.

A) 22 B) 18 C) 19,5 D) 22,5



  1. Ushbu 𝑦 = 𝑐𝑜𝑠𝑥, 𝑦 = 0, 𝑥 = 0 va 𝑥 = π chiziqlar bilan chegaralangan egri chiziqli

6


trapetsiyaning yuzini (kv.birlik) toping.
A) 23 B) 1,5 C) 3 D) 0,5



  1. Ushbu 𝑦 = 3𝑥, 𝑦 = 0, 𝑥 = 1 va 𝑥 = 8 chiziqlar bilan chegaralangan egri chiziqli trapetsiyaning yuzini (kv.birlik) toping.

A) 11 3
4
B) 12 3
5
C) 11 D) 9


  1. Ushbu 𝑦 = 1

𝑥+7
, 𝑦 = 0, 𝑥 = 0 va 𝑥 = 2 chiziqlar bilan chegaralangan egri chiziqli

trapetsiyaning yuzini (kv.birlik) toping.

    1. ln 8





    1. ln 9





    1. ln 10





    1. ln 6





( ) ( ) ( ) ( )
7 7 7 7

  1. Berilgan 𝑦 = 4𝑥 − 𝑥2 parabola bilan Ox o‘qi orasidagi sohani yuzini (kv.birlik) toping.

    1. 8

3

    1. 16

3

    1. 38

3

    1. 32

3





  1. Moslikni toping:
  1. savol



Funksiyalar

Boshlang‘ich funksiyalar

1. 8𝑥7



2. 3√𝑥2




A. 3 𝑥 3√𝑥2 + 𝐶
5

B. ln|2𝑥| + 𝐶

3. 2 , 𝑥 ≠ 0
𝑥
4. 3𝑠𝑠𝑠𝑛3𝑥

C. −𝑐𝑜𝑠3𝑥 + 𝐶

D. − 1 𝑐𝑜𝑠3𝑥 + 𝐶
3

E. 𝑥8 + 𝐶

F. ln𝑥2 + 𝐶



1

2

3

4
















  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 1 , 𝑥 > 0
𝑥𝑙𝑛5
2. 1 , 𝑥 ≠ 0
𝑥−4

3. 1 , 𝑥 ≠ 𝜋 + 𝜋𝑛 , (𝑛 ∈ 𝑍)


𝑐𝑜𝑠27𝑥 14 7

4. 23𝑥



A.1 𝑡𝑔7𝑥 + 𝐶
7

B. log5|𝑥| + 𝐶

C. −𝑡𝑔7𝑥 + 𝐶

D.− 1 + 𝐶
3𝑥−3

E. 8𝑥 + 𝐶
3∙𝑙𝑛2

F. 123𝑥 + 𝐶
3 𝑙𝑛2


1

2

3

4














  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 𝑥 + 2

2. 1 , 𝑥 ≠ 1


𝑥−1


3. 𝑒1−3𝑥

4. 1 , 𝑥 ≠ 𝜋𝑛 , (𝑛 ∈ 𝑍)


𝑠𝑠𝑠𝑛24𝑥 4

A. ln|𝑥 − 1| + 𝐶

B.− 1 𝑒1−3𝑥 + 𝐶
3

C. −3𝑒1−3𝑥 + 𝐶

D.− 1 𝑐𝑡𝑔4𝑥 + 𝐶
4

E. −𝑐𝑡𝑔4𝑥 + 𝐶

F. 𝑥2 + 2𝑥 + 𝐶
2


1

2

3

4













  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 6𝑥2 − 2𝑥
2. 3 , 𝑥 ≠ 0
4𝑥

3. 2


𝑒𝑥

4. − 1 , 𝑥 ≠ 𝜋 + 𝜋𝑛 , (𝑛 ∈ 𝑍)


𝑐𝑜𝑠23𝑥 6 3




A. 3 𝑥 + 𝐶
2

B. −2𝑒−𝑥 + 𝐶

C. − 1 𝑒−𝑥 + 𝐶
2

D.2𝑥3 − 𝑥2 + 𝐶

E. −𝑡𝑔3𝑥 + 𝐶

F. − 1 𝑡𝑔3𝑥 + 𝐶
3


1

2

3

4
















  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

2
1. −𝑥 + 𝑥
2
2. 1 , 𝑥 ≠ −1
1+𝑥


3. 32+5𝑥

4. 1 , 𝑥 ≠ 3𝜋𝑛, (𝑛 ∈ 𝑍)


𝑠𝑠𝑠𝑛2(𝑥
3)

A. ln|𝑥 + 1| + 𝐶

2+3𝑥
B. 3 + 𝐶
5𝑙𝑛3

2 3
C. − 𝑥 + 𝑥 + 𝐶
2 6

D.− 1 𝑐𝑡𝑔 𝑥 + 𝐶
3 3

E. −3𝑐𝑡𝑔 𝑥 + 𝐶
3

F. −𝑥 + 𝑥2 + 𝐶
3


1

2

3

4














  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1
1. 𝑥 + 2
3
2. (𝑥 + 3)−1, 𝑥 ≠ −3

A. 2cos3𝑥 + 𝐶

B. 3 𝑥2 + 𝐶
3
2

C. −2𝑐𝑜𝑠3𝑥 + 𝐶

3. 72𝑥


4. −6𝑠𝑠𝑠𝑛3𝑥,



D.−(𝑥 + 3)−2 + 𝐶

E. ln|𝑥 + 3| + 𝐶

2𝑥
F. 1 ∙7 + 𝐶
2 𝑙𝑛7



1

2

3

4
















  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 𝑥3

2. 3 , ( 𝑥 ≠ −6)


𝑥+6


3. 𝑒𝑥+2

4. 3𝑠𝑠𝑠𝑛9𝑥



A. 𝑒𝑥+2 + 𝐶

B.− 1 cos9𝑥 + 𝐶
3

C. 𝑥4 + 𝐶
4

D.3ln|𝑥 + 6| + 𝐶

E. −3𝑐𝑜𝑠9𝑥 + 𝐶

F. 3𝑥2 +𝐶




  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar




1. 5√𝑥2

2.− 6 , 𝑥 ≠ 0


𝑥2
3. 1
𝑒−4𝑥

4. −6 , 𝑥 ≠ 𝜋𝑛 , (𝑛 ∈ 𝑍)


𝑠𝑠𝑠𝑛23𝑥 3

A. ln|𝑥 − 1| + 𝐶

B.5 𝑥 5√𝑥2 + 𝐶
7

C. 6 + 𝐶
𝑥

D.1 𝑒4𝑥 + 𝐶
4

E. 2𝑐𝑡𝑔3𝑥 + 𝐶

F. 𝑥2 + 2𝑥 + 𝐶
2


1

2

3

4













  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 1 𝑥 ≠ 0
3 𝑥

2. 1 , 𝑥 ≠ −9
𝑥+9

3. 𝑒5𝑥


4. 𝑠𝑠𝑠𝑛6𝑥,



A. 5𝑒5𝑥 + 𝐶

B.3 3√𝑥2 + 𝐶
2

C. ln|𝑥 + 9| + 𝐶

D.− 1 𝑐𝑜𝑠6𝑥 + 𝐶
6

E.1 𝑒5𝑥 + 𝐶
5

2
F. 𝑥 + 2𝑥 + 𝐶
2


1

2

3

4














  1. Moslikni toping:

Funksiyalar

Boshlang‘ich funksiyalar

1. 4(𝑥 + 2)3

2. 1 , 𝑥 ≠ 0


3𝑥

3. 6−𝑥


4. 16𝑐𝑜𝑠8𝑥,



A. −96𝑠𝑠𝑠𝑛8𝑥 + 𝐶

−𝑥
B.− 6 + 𝐶
𝑙𝑛6

C. 12(𝑥 + 2)2 + 𝐶

D. 2𝑠𝑠𝑠𝑛8𝑥 + 𝐶

E.1 ln|𝑥| + 𝐶
3

F. (𝑥 + 2)4 + 𝐶


1

2

3

4













  1. Download 1,53 Mb.
1   2   3   4   5




Download 1,53 Mb.