Qurg'oqchilik butun dunyo bo'ylab sabzavotlarning o'sishi va hosildorligini cheklaydigan eng muhim ekologik cheklovdir




Download 60,05 Kb.
bet12/12
Sana06.08.2024
Hajmi60,05 Kb.
#269191
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
Qurg\'oqchilik stressining o\'simliklarning morfologik, fiziologik va biokimyoviy xususiyatlariga ta\'siri sharh

Enzimatik antioksidantlar
Enzimatik antioksidantlarga superoksid dismutaza (SOD; EC 1.15.1.1), peroksidaza (POD; EC 1.11.1.7), katalaza (CAT; EC 1.11.1.6) va AsA-GSH yoki Halliwell-Asada yo'lining fermentlari kiradi, ya'ni. askorbat peroksidaza (APX; EC 1.1.1.11), glutatyon reduktaza (GR; EC 1.6.4.2), monodehidroaskorbat reduktaza (MDHAR; EC 1.6.5.4) va dehidroaskorbat reduktaza (DHAR; EC 1.1). Hujayralardagi bu antioksidant fermentlar hujayralardagi ROS ni to'g'ridan-to'g'ri detoksifikatsiya qiladi, shuningdek hujayralarning antioksidant molekulalarini sintezini, parchalanishini va qayta ishlanishini katalizlaydi.
Xulosa
Qurg'oqchilik stressi bilan bog'liq ta'sirlar, bardoshlik mexanizmlari va parametrlari haqidagi tushunchamizni yaxshilashga qaratilgan qadamlarni ko'rib chiqing. Hozirgi zamon turli xil abiotik stresslar va ayniqsa qurg'oqchilik bilan bog'liq bo'lgan kombinatsiyalarga chidamlilikni oshirishga qaratilgan yaxshi rejalashtirilgan eksperimental dasturlarni talab qildi. Biz bilimlarimizni takomillashtirsak va suv tanqisligining engil, o'rtacha va og'ir ta'sirining ekinlarning turli morfologik, fiziologik, biokimyoviy, o'sishi, rivojlanishi, hosildorligi va sifatiga ta'sirini miqdoriy jihatdan aniqlaganimizda, ushbu omillarni qurg'oqchilik stressini o'rganishda qo'llash ehtimoli ortadi. takomillashtiriladi va hisobga olinishi kerak. Qishloq xo'jaligi tizimlarida suv iste'moli samaradorligini oshirish dunyoning ko'plab mintaqalarining haydaladigan erlarida asosiy ustuvorlik hisoblanadi. Suv resurslarining kamayib borishi xavfi ortib borayotgani qurg'oqchilikka chidamlilik va suvdan foydalanish samaradorligini oshirish bilan germplazmani aniqlashni taklif qiladi.


References
1.Abedi, T., Hassan, P. 2010. Antioxidant Enzyme Changes in Response to Drought Stress in Ten Cultivars of Oilseed Rape (Brassica napus L.). Czech J. Genet. Plant Breed. 46 : 27-34. Acquaah, G. 2007. Principles of Plant Genetics and Breeding, Blackwell Publishings, Oxford, UK.
2. Agati, G., Azzarello, E., Pollastri, S., and Tattini, M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012; 196: 67-76.
3. Ansari, W. A., Atri, N., Ahmad, J., Qureshi, M. I., Singh, B., Kumar, R., Pandey, S. Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PloS one, 2019; 14(9).
4. Ansari, W. A., Atri, N., Singh, B., Kumar, P., Pandey, S. Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica, 2018; 56(4) : 1019-1030.
5. Ansari, W. A., Atri, N., Singh, B., Pandey, S. Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biol. Plantarum, 2017; 61(2) : 333-341.
6. Anyia, A.O., Herzog, H. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur. J. Agron. 2004; 20: 327-339.
7. Azia, F., Stewart, K. Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. J. Plant Nutr. 2001; 24: 961- 966.
8. Bahadur, A., Chatterjee, A., Kumar, R., Singh, M., Naik, P.S. Physiological and biochemical basis of drought tolerance in vegetables. Vegetable Science, 2011; 38(1): 1-16.
9. Batlang, U., Baisakh, N., Ambavaram, M.M., Pereira, A. Phenotypic and physiological evaluation for drought and salinity stress responses in rice. Methods Mol. Biol. 2013; 956 : 209-225.
10. Battisti, D.S., Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 2009; 323: 240-244.
11. Blum, A. Drought resistance, water-use efficiency, and yield potential-Are they compatible, dissonant, or mutually exclusive. Aust. J. Agric. Res., 2005; 56 : 1159-1168.
12. Blum, A. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 1996; 20(2) : 135-148.
13. Boyer, J.S. Measurement of the water status of plants. Ann. Review of Plant Physio. 1968; 9: 351-363.
14. Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Mare, C., Tondelli, A., Stanca, A.M. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res. 2008; 105: 1-14.
15. Chaves, M.M., Maroco, J.P., Pereira, J.S. Understanding plant responses to drought from genes to the whole plant. Funct. Plant Biol. 2003; 30: 239-264.
16. Choudhury, R.A., Basu, S. “Ascorbate- Glutathione and plant tolerance to various abiotic stresses,” in Oxidative Stress in Plants: Causes, Consequences and Tolerance, eds Anjum, N.A., Umar, S., Ahmad, A. (New Delhi: IK International Publishers), 2012; 177-258.
17. Condon, A.G., Richards, R.A., Rebetzke, G.J., Farquhar, G.D. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 2002; 42: 122-131.
18. David, T.S., Henriques, M.O., Kurz- Besson, C., Nunes, J., Valente, F., Vaz, M., Pereira, J.S., Siegwolf, R., Chaves, M.M., Gazarini, L.C., David, J.S. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 2007; 27: 793-803. 19. Deeba, F., Pandey, A.K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y.K., Pramod A. Shirke, P.A., Pandey. V. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 2012; 53: 6-18.
20. Deikman, J., Petracek, M., Heard, J.E. Drought tolerance through biotechnology: improving translation from the laboratory to farmers fields. Curr. Opin. Biotechnol. 2012; 23: 243-250.
21. Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, A.G., Sokolik, A., Yurin, V. Stress-induced electrolyte leakage: the role of K+- permeable channels and involvement in programmed cell death and metabolic adjustment. J. Exp. Bot. 2014; 65(5): 1259-1270.
22. Din, J., Khan, S.U., Ali, I., Gurmani, A.R. Physiological and agronomic response of canola varieties to drought stress. J. Anim. Plant Sci. 2011; 21: 78-82.
23. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 2009; 29: 185-212.
24. Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J., Medrano, H. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 2008; 31: 602-612.
25. Foyer, C.H., Noctor, G. Oxygen processing in photosynthesis: regulation and signalling. New Phytol., 2000; 146: 359-388.
26. Garg, N., Manchanda, G. ROS generation in plants: boon or bane. Plant Biosys. 2009; 143: 81-96.
27. Gill, S.S., Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010; 48 : 909-930.
28. GoI 2013, ‘Reserve Bank of India Annual Report 2012-13’, Government of India.
29. Grover, A. 2004. “Genetic improvement for abiotic stress responses.” Plant Breeding. Springer Netherlands. 167-193.
30. Jain, M., Tiwary, S., Gadre, R. Sorbitol-induced changes in various growth and biochemical parameters in maize. Plant Soil Environ. 2010; 56: 263-267.
31. Jajic, I., Sarna, T., Strzalka, K. Senescence, Stress, and Reactive Oxygen Species. Plants, 2015; 4: 393-411.
32. Jaleel, C.A., Gopi, R., Panneerselvam, R. Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. Comp Rend Biol. 2008; 331: 272-277.
33. Jaleel, C.A., Gopi, R., Panneerselvam, R. Growth and photosynthetic pigments responsesof two varieties of Catharanthus roseus to triadimefon treatment. Comp. Rend. Biol. 2008; 331: 272- 277.
34. Jaleel, C.A.P., Manivannan, A., Wahid, M., Farooq, R., Somasundaram, Panneerselvam, R. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009; 11 : 100- 105.
35. Kannan, N..D., Kulandaivelu, G. Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. J. Med. Plants Res. 2011; 5 : 3929-3935.
36. Kaushik, D., Roychoudhury, A. “Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants”. Frontiers in Environmental Science, 2014; 2 : 53.
37. Kumari, S., Roy, S., Singh, P., Singla-Pareek, S.L., Pareek, A. Cyclophilins: proteins in search of function. Plant Signaling Behavior, 2013; 8(1): e22734.
38. Lee, B., Zhu, J.K. Phenotypic analysis of Arabidopsis mutants: electrolyte leakage after freezing stress. Cold Spring Harbour Protocols., 2010; 4970.
39. Lee, B.R., Jin, Y.L., Avice, J.C., Cliquet, J.B., Qurry, A., Kim, T.H. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytol. 2009; 182 : 654- 663.
40. Lopez, L.D., Gimenob, V., Simonc, L., Martínezb, V., Rodríguez-Ortegab, W.M., García-Sanchez, F. Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. Agric. Water Manag. 2012; 105 : 48-56.
41. Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. Toxicol. Pharmacol. 2011; 153: 175-190.
42. Mahalingam, R., Rabert, G.A., Paramasivam Manivannan, P. “Triazole induced changes on biochemical and antioxidant metabolism of Zea mays L. (Maize) under drought stress”. J. Plant Stress Phys. 2015; 1 : 35-42.
43. Manivannan, P., Jaleel, C.A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., Panneerselvam, R. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surf. B: Biointerfaces. 2007; 57: 69-74.
44. Manivannan, P., Rabert, G.A., Rajasekar, M., Somasundaram, R. Analysis of antioxidant enzyme activity in various genotypes of Helianthus annuus L. (Sunflower) under varied irrigation regimes. Food Biology, 2014; 3: 1-10.
45. Marquard, R.D., Tipton, J.L., Relationship between extractable chlorophyll and in situ method to estimate leaf greenness. HortScience, 1987; 22: 1327.
46. Medranoa, H., Tomása, M., Martorella, S., Flexasa, J., Hernándeza, E., Rossellóa, J., Poub, A., Escalonaa, M.J., Botaa, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. The crop journal., 2015: 3; 220-228.
47. Mohammadi, P.P., Moieni, A., Komatsu, S. Comparative proteome analysis of droughtsensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress. Amino Acids, 2012; 43: 2137-2152.
48. Monakhova, O.F., Chernyadev, I.I., Protective role of kartolin-4 in wheat plants exposed to soil drought. Appl. Biochem. Microbiol. 2012; 38: 373-380.
49. Nahakpam, S., Shah, K. Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Grow. Regul. 2011; 63 : 23-35.
50. Pan, Y., Wu, L.J., Yu, Z.L. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 2006; 49: 157-165.
51. Payam, M. Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum). Agricultural Science Research J., 2011; 1(1): 64-68.
52. Pinheiro, C., Chaves, M.M. Photosynthesis and drought: can we make metabolic connections from available data. J. Exp. Bot. 2011; 62: 869- 882.
53. Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S. Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. J. Med. Plants Res. 2011; 5: 2483-2488.
54. Rai, N., Rai, K.K., Tiwari, G., Singh, P.K. Changes in free radical generation, metabolites and antioxidant defense machinery in hyacinth bean (Lablab purpureus. L) in response to high temperature stress. Acta Physiol Plant., 2015; 37: 37-46.
55. Rasool, S., Ahmad, A., Siddiqi, T.O., Ahmad, P. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 2013; 35: 1039-1050.
56. Rodriguez, S.E., Wilhelmi, M.M.R., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci., 2010; 178: 30-40.
57. Rollins, J.A., Habte, E., Templer, S.E., Colby, T., Schmidt, J., Von-Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Botany. 2013; 64(11): 3201-3212.
58. Rolny, N., Costa, I., Carrión, C., Guiamet, J.J. Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence. Plant Physiol Biochem. 2011; 49: 1220-1227.
59. Sanchez, B., Fernandez, J., Morales, T.A., Morte, A., Alarcon, J.J. Variation in water stress, gas exchange, and growth in Rasmanrins officinalis plants infected with Glamus deserticola under drought conditions. J. Plant Physiol. 2006; 161 : 675-682.
60. Sanchez-Rodriguez, E., Rubio-Wilhelmi, M.M., Cervilla, L.M., Blasco, B., Rios, J.J., Rosales, M.A., Romero, L., Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010; 178: 30-40.
61. Sapeta, H., Costab, J.M., Lourenc, T., Maroco, J., Vander-Lindee, P., Oliveira, M.M. Drought stress response in Jatropha curcas: growth and physiology. Environ. Exp. Bot. 2013; 85 : 76-84.
62. Sekhon, H.S., Singh, G., Sharma, P., Bains, T.S. 2010. Water Use Efficiency Under Stress Environments In: Climate Change and Management of Cool Season Grain Legume Crops (Eds S.S. Yadav, D.L. Mc Neil, R. Redden, and S.A. Patil). Springer Press, Dordrecht- Heidelberg-London-New York.
63. Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Hong-Mei, M. Higher plant antioxidants and redox signaling under environmental stresses. Comp. Rend. Biol. 2008; 331: 433-441.
64. Shimazaki, K., Doi, M., Assmann, S.M., Kinoshita, T. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 2007; 58 : 219-247.
65. Singh, S., Rathore, M., Goyary, D., Singh, R.K., Anandhan, S., Sharma, D.K., Ahmed, Z. Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep. 2011; 30: 1019-1028.
66. Soda, M.E., Nadakuduti, S.S., Pillen, K., Uptmoor, R. Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley pre-introgression lines. Molecular Breeding, 2010; 26: 583-593.
67. Stoilova, S.L., Vaseva, I., Grigorova, B., Demirevska, K., Feller, U. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery. Plant Physiol. Biochem. 2010; 48: 200-206.
68. Su, J., R. Wu, R. Stress inducible synthesis of proline in transgenic rice confers fastergrowth under stress conditions than with constitutive synthesis. Plant Sci. 2004; 166: 941-948.
69. Tewari, R.K., Kumar, P., Sharma, P.N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 2006; 223 : 1145-1153.
70. Turner, N.C. Optimizing water use. In: Nösberger J, Geiger HH, Struik PC (Eds.), Proceedings of the Third Crop Science Congress on Crop Science Progress and Prospects. CABI international Wallingford UK. 2001; Pp: 119-135.
71. USDA (2014). Crop production 2013 summary. Chesterfield, MO. National statistics for corn. 72. Wu, Q.S., Xia, R.X., Zou, Y.N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European J. Soil Biol. 2008; 44: 122-128.
73. Wullschleger, S.D., Yin, T.M., DiFazio, S.P., Tschaplinski, T.J., Gunter, L.E., Davis, M.F., Tuskan, G.A. Phenotypic variation in growth and biomass distribution for two advancedgeneration pedigrees of hybrid poplar. Canadian J. For. Res. 2005; 35: 1779-1789.
74. Zhang, M., Chen, Q., Shihua Shen, S. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiol Plant., 2011; 33: 313-318.
75. Chjan, M., Duan, L., Zhai, Z., Li, J., Tian, ​​X., Vang, B., Xe, Z., Li, Z. O'simlik o'sishi regulyatorlarining suv tanqisligiga ta'siri. soyada hosilning yo'qolishiga olib keldi. 4-Xalqaro o'simlikshunoslik kongressi materiallari, Brisben, Avstraliya 2004.
76. Ju, J.K. Tuz, suv va sovuq stresslar ostida hujayra signalizatsiyasi. Curr. Fikr. O'simlik Biol., 2001; 4: 401-406.
Download 60,05 Kb.
1   ...   4   5   6   7   8   9   10   11   12




Download 60,05 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Qurg'oqchilik butun dunyo bo'ylab sabzavotlarning o'sishi va hosildorligini cheklaydigan eng muhim ekologik cheklovdir

Download 60,05 Kb.