DCS process control experiment module




Download 1,33 Mb.
Pdf ko'rish
bet3/4
Sana15.05.2024
Hajmi1,33 Mb.
#235712
1   2   3   4
DCS process control experiment module 
The following describes the typical case in the field experiment module: the design flow of the 
liquid level control experiment of DCS process and the related experimental test. The experimental 
module is based on the DCS control network with local control. DCS control network is composed of 
SUPCON technology development limited JX 300X DCS to achieve. It communicates with the III - 
QXLPC process control experimental device in real time, and it is used to exchange data and control 
parameters with the OPC server and the OPC client and the virtual server[9]. After the experimental 
data was processed by the center server, and were transmitted to the remote customer on the Internet 
by server Web. At the same time, the control parameters of the remote client can also be transferred to 
the DCS through the central server, which can realize the control of the process control system. The 
solution to this problem is the DataSocket technology of LabVIEW and Server Web in front of the 
communication problem. DataSocket technology enables the virtual laboratory to be well integrated 
with OPC technology, and realized the real-time collection of the field data; The Server Web 
technology achieved the user's remote control laboratory[10]. In the experiment, the liquid level of 
the boiler in the III QXLPC process control experiment device is selected as the controlled variable. 
This is a kind of nonlinear control system with pure time delay, and the mathematical model is 
difficult to establish precisely. And it is a very classical controlled object in the actual industrial 
production. It is difficult to meet the requirements of the system control performance with the 
conventional PID algorithm or the single control method. In order to obtain better control effect, this 
study developed a intelligent PID controller that was charged for controlled device[11]. An 
intelligent PID controller composed of a single neuron with self-learning and adaptive ability. The 
controller has an online self tuning function, and its structure is shown in Figure 1. 
20


Fig. 1 Structure flow of single 

neuron PID controller 
In Figure 3, 
ω
1

ω
2

ω
3
is the weighted coefficient, which can be adjusted by the ability of the 
neuron's self-learning. K is the neuron's adjustable ratio coefficient. The single neuron adaptive 
controller realized the adaptive and organizing function by adjusting the weighting coefficients. The 
adjustment of weight coefficient can adopt different learning rules, and thus constitute different 
control algorithms. In the experimental project of virtual laboratory, the advanced algorithms are 
modular, and the sub VI is constructed to be called by other experimental modules. And the 
realization of the single neuron PID controller will be the use of LabVIEW another way of calling. 
LabVIEW in the dynamic link library call was achieved through the CLF (Library Function Call) 
node. In the course of implementation of the single neuron PID controller, single neuron PID control 
algorithm was coded in the integrated environment of VC++, including set corresponding function 
name, input and output parameters and return type etc.. Then the generated source code files are 
compiled, and generate DLL files. So you can call these functions directly in LabVIEW. Then, the 
ω
1

ω
2

ω
3
and adjustable ratio coefficient K are initialized in the main program flow. Figure 2 shows a 
single neuron PID control algorithm flow chart. Figure 3 shows the VI single_n. flow chart. 
Fig.2 Program flow of single-neuron PID 
controller 
Fig. 3 Program flow of single_n. vi 
In the experiment, the controlled object is put into the implementation of step input. That is to set 
the boiler level from 200 mm up to 250 mm. The experiment is repeated debugging. The paper 
selected the appropriate adjustable coefficient, learning rate and other control parameters: K=50.0, 
Cp = 100.0, Ci = 0.1, Cd = 1.0, ts = 2 s. After the experiment, the level of the liquid level is stable. The 
local end of the single neuron PID controller level response curve shown in Figure 4, we can see that 
the system response fast, and no overshoot. At the same time, when the external disturbance is added 
to the system, it is able to return to steady state quickly without oscillation. The experimental results 
show that the single neuron PID controller in this paper has the ability to be adaptive to the 
time-varying and large time delay of the system, and it has better dynamic and static performance and 
robustness. 
21


Fig. 4 The local operation curve of single-neuron 
PID controller 
Fig. 5 The operation curve of single-neuron 
PID controller of the remote-clien 
At the same time, the system can achieve remote control experiments on the Internet by virtual 
laboratory remote client. Because the virtual lab system is based on the virtual experiment server 
located at the center of the central server, which is responsible for the management and scheduling of 
each experiment module and the field experiment instrument. On the one hand, the system receive the 
Web server through the remote client's instructions, and call the relevant experimental module to 
experiment and download the experimental parameters; On the other hand, the system collected field 
control end of the experimental data through the interface of OPC server DataSocket protocol, and 
transmitted in real time to the remote client. The experimental results was shown in Figure 5. The 
remote client operating curve and the local end is basically the same, the delay is less than 1s. It is 
proved that the virtual network laboratory can achieve the basic goal of the network based remote 
experiment. 

Download 1,33 Mb.
1   2   3   4




Download 1,33 Mb.
Pdf ko'rish