|
Mantiqiy element «VA» - konyuksiya, mantiqiy ko‘paytirish amali, AND
|
bet | 2/2 | Sana | 25.07.2024 | Hajmi | 134,31 Kb. | | #268595 |
Bog'liq 4-Topshiriq fsggegege (1) Mantiqiy element «VA» - konyuksiya, mantiqiy ko‘paytirish amali, AND
Ta’rif: A va B mulohozaning ikkalasi rost bo‘lganda rost qolgan hollarda yolg‘on (1-jadval). (A & B, A and B, A ∩ B)
A
|
B
|
A ∩ B
|
0
|
0
|
0
|
0
|
1
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
Mantiqiy element «YOKI» - dizyuksiya, mantiqiy qo‘shish, OR
Ta’rif: A va B mulohozaning kamida bittasi rost bo‘lganda rost qolgan hollarda yolg‘on (2-jadval). (A | B, A yoki B, A or B, A 𝖴 B)
A
|
B
|
A 𝖴 B
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
Mantiqiy element «INKOR» - inkor, invertor, NOT
Ta’rif: A mulohoza rost bo‘lganda yolg‘on, yolg‘on bo‘lganda rost (3- jadval). (not A, emas A, 𝑨̅)
Mantiqiy element «VA-INKOR» - inkor bilan bog‘lanish (mantiqiy
ko‘paytirish), NAND
ya’ni,
Ta’rif: A va B mulohozaning ikkalasi rost bo‘lganda rost qolgan hollarda yolg‘on bo‘lgan mantiqiy qo‘shish amalining inkori (2-jadval).
A
|
B
|
A & B
|
̅𝑨̅̅&̅̅̅̅𝑩̅
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
Mantiqiy element «YOKI-INKOR» - inkor bilan dizyunksiya (mantiqiy
qo‘shish), NOR
ya’ni
Ta’rif: A va B mulohozaning kamida bittasi rost bo‘lganda rost qolgan hollarda yolg‘on bo‘lgan mantiqiy amalining inkori (2-jadval).
A
|
B
|
A 𝖴 B
|
̅𝑨̅̅̅𝖴̅̅̅̅𝐁̅
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
Mantiqiy amallarni quyidagi ketma-ketlikda yechamiz:
Invertor (YO‘Q) mantiqiy inkor amali yechiladi.
Konyuksiya (VA) mantiqiy ko‘paytirish amali bajariladi.
Dizyuksiya (YOKI) mantiqiy qo‘shish amali bajariladi.
Implekatsiya (VA-YO‘Q) mantiqiy amali.
Ekvivalinsiya (YOKI-YO‘Q) mantiqiy amali bajariladi.
(agar qavslar kelsa shu holatda qavslarni ichi birinchi bajariladi)
Berilgan misol:
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥̅1𝑥̅2𝑥3)(𝑥̅1𝑥2𝑥̅3)
bunda
Yechish:
𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1
𝑦1 = (1 ∩ 0 ∩ 0) 𝖴 (0 ∩ 1 ∩ 1) 𝖴 (0 ∩ 0 ∩ 0) = (1 ∩ 0) 𝖴 (0 ∩ 1) 𝖴 (0 ∩ 0) = 0 𝖴 0 𝖴 0 = 0
Javob:
𝒀𝟏 = 𝟎
1-misol yechishda sxema asosidagi mantiqiy elementlar
AMALIY ISHNI BAJARISH BO‘YICHA TOPSHIRIQ
№
|
Variantlar
|
Berilgan qiymat
|
1
|
𝑦̅̅̅̅=̅̅̅(̅̅𝑥̅̅̅̅̅𝑥̅̅̅̅̅̅𝑥̅̅̅ ̅)̅̅̅̅(̅𝑥̅̅̅̅̅𝑥̅̅̅ ̅̅̅𝑥̅̅̅)̅̅̅̅(̅𝑥̅̅̅ ̅̅̅𝑥̅̅̅̅̅̅𝑥̅̅ ̅̅)
1 1 2 3 1 2 3 1 2 3
|
x1=0,x2=1, x3=1
|
2
|
𝑦̅̅̅̅=̅̅̅(̅̅𝑥̅̅̅̅̅̅𝑥̅̅̅̅̅𝑥̅̅̅ ̅)̅̅̅̅(̅𝑥̅̅̅̅̅̅𝑥̅̅̅ ̅̅̅𝑥̅̅̅)̅̅̅̅(̅𝑥̅̅̅ ̅̅̅𝑥̅̅̅̅̅̅𝑥̅̅ ̅̅)
1 1 2 3 1 2 3 1 2 3
|
x1=1,x2=0, x3=1
|
3
|
𝑦1 = (𝑥1̅ 𝑥̅2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
4
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥̅3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=0, x3=0
|
5
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥̅2𝑥̅3)
|
x1=0,x2=1, x3=0
|
6
|
𝑦1 = (𝑥1 ∩ 𝑥2 𝖴 𝑥3)(𝑥̅1𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=1, x3=0
|
7
|
𝑦1 = (𝑥1 𝖴 𝑥2 𝖴 𝑥̅3)(𝑥̅1𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
8
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=0, x3=1
|
9
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥̅1 𝖴 𝑥̅2 𝖴 𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
10
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥̅1𝑥̅2𝑥3)(𝑥1̅ 𝖴 𝑥2 𝖴 𝑥̅3)
|
x1=1,x2=1, x3=0
|
11
|
𝑦1 = (𝑥1 𝖴 𝑥2 𝖴 𝑥̅3) 𝖴 (𝑥̅1 𝖴 𝑥̅2 𝖴 𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
12
|
𝑦1 = (𝑥1 𝖴 𝑥2 𝖴 𝑥̅3)(𝑥̅1 𝖴 𝑥̅2 𝖴 𝑥3)(𝑥1̅ 𝖴 𝑥2 𝖴 𝑥̅3)
|
x1=1,x2=1, x3=0
|
13
|
𝑦1 = (𝑥1̅ 𝑥̅2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
14
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=1, x3=0
|
15
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=0, x3=1
|
16
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥̅1𝑥̅2𝑥3)(𝑥2𝑥3)
|
x1=0,x2=0, x3=0
|
17
|
𝑦1 = (𝑥1𝑥̅2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥̅2𝑥̅3)
|
x1=1,x2=1, x3=1
|
18
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=0
|
19
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=1
|
20
|
𝑦1 = (𝑥1𝑥̅2 𝑥3)(𝑥̅2𝑥3)(𝑥̅1𝑥2𝑥̅3)
|
x1=0,x2=0, x3=0
|
21
|
𝑦1 = (𝑥1𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥3)
|
x1=1,x2=1, x3=1
|
22
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=0,x2=1, x3=0
|
23
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=0, x3=1
|
24
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥3)(𝑥̅1𝑥2𝑥̅3)
|
x1=0,x2=1, x3=0
|
25
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥2𝑥3)(𝑥1̅ 𝑥2𝑥̅3)
|
x1=1,x2=1, x3=1
|
26
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥̅2𝑥3)(𝑥̅1𝑥2𝑥̅3)
|
x1=0,x2=0, x3=0
|
27
|
𝑦1 = (𝑥1𝑥2𝑥3)⬚(𝑥1̅ 𝑥2𝑥3)(𝑥1̅ 𝑥̅3)
|
x1=0,x2=1, x3=1
|
28
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥3)(𝑥̅1𝑥2𝑥̅3)
|
x1=1,x2=1, x3=0
|
29
|
𝑦1 = (𝑥2𝑥̅3)(𝑥̅1𝑥̅2𝑥3)(𝑥1̅ 𝑥̅2𝑥̅3)
|
x1=0,x2=1, x3=1
|
30
|
𝑦1 = (𝑥1𝑥2𝑥̅3)(𝑥1̅ 𝑥̅2𝑥3)(𝑥2𝑥̅3)
|
x1=0,x2=1, x3=0
|
|
| |