|
McKinseyning katta ma'lumotlar va tahlil qilish usullari
|
bet | 2/4 | Sana | 08.10.2024 | Hajmi | 31,11 Kb. | | #274069 |
Bog'liq Ma\'ruza-1McKinseyning katta ma'lumotlar va tahlil qilish usullari:
Crowdsourcing;
Aralashtirish va ma'lumotlarni birlashtirish;
Mashinasozlik;
Sun'iy neyron tarmoqlari;
Naqshni aniqlash;
Bashoratli tahlil
Simulyatsion modellashtirish;
Mekansal tahlil;
Statistik tahlil;
Analitik ma'lumotlarni vizualizatsiya qilish.
Ma'lumotni qayta ishlashga imkon beradigan gorizontal kengayish katta ma'lumotlarni qayta ishlashning asosiy printsipidir. Ma'lumotlar hisoblash tugunlariga taqsimlanadi va ishlov berish ishlashning yomonlashuvisiz amalga oshiriladi. McKinsey shuningdek qo'llaniladigan kontekstda aloqalarni boshqarish tizimlari va Business Intelligence-ni o'z ichiga oldi.
Texnologiya:
NoSQL
MapReduce
Hadoop;
Uskuna echimlari.
Data lake(ma'lumotlar ko'li) - qayta ishlanmagan katta ma'lumotlar ombori.
"Ko'l" har xil manbalardan kelgan, har xil formatda bo'lgan ma'lumotlarni saqlaydi. Bu esa odatiy relatsion ma'lumotlar omborida ma'lumotlarni aniq struktura asosida saqlashdan ko'ra arzonroqqa tushadi. Ma'lumotlar ko'li, ma'lumotlarni boshlang'ich holatida analiz qilish imkonini beradi. Bundan tashqari, "ko'l"lardan bir vaqtni o'zida bir nechta ishchilar foydalanishlari mumkin.
Data science(ma'lumotlar haqidagi fan) - analiz muommolarini , ma'lumotlarni qayta ishlash va ularni raqamli ko'rinishda taqdim etishni o'rganadigan fan.
Bu atama dunyoga kelgan vaqt 1974-yil hisoblanadi. O'sha yili Daniyalik informatik, Peter Naur "A Basic Principle of Data Science" nomli kitobini chop ettirgan.
2010-yillar boshida katta ma'lumotlarni tarqalishi natijasida bu yo'nalish juda foydali va kelajagi bor biznesga aylandi. Va o'shandi katta ma'lumotlar bilan ishlaydigan mutaxassislarga talab juda oshib ketdi.
Data science tushunchasiga ma'lumotlar omborini loyihalash va raqamlangan ma'lumotlarni qayta ishlashning barcha metodlari kiradi. Ko'plab mutaxassislar fikricha, aynan data science big dataning biznes nuqtai nazaridan hozirgi zamonoviy o'rindoshi hisoblanadi.
Data mining(ma'lumotlarni topish) - biron qonuniyatni topish maqsadida ma'lumotlarni intellektual analiz qilishga aytiladi. Isroillik matematik Grigoriy Pyatetskiy-Shapiro 1989-yilda bu atamani fanga kiritgan.
Texnologiyalar, avvalari noma'lum va foydali bo'lgan qayta ishlanmagan(hom) ma'lumotlarni topish jarayoniga data mining(ma'lumotlarni topish) deyiladi. Data mining metodlari ma'lumotlar ombori, statistika va sun'iy intellekt tutashgan nuqtada joylashadi.
|
| |