• Honeypot Smart Contracts
  • Consensus Algorithm Analysis
  • Transactions and Transaction Logs analysis




    Download 0,66 Mb.
    Pdf ko'rish
    bet13/28
    Sana18.12.2023
    Hajmi0,66 Mb.
    #122650
    1   ...   9   10   11   12   13   14   15   16   ...   28
    Bog'liq
    Huaqun Xingjie - A Survey on blockchain Technology and its Security - 2022 March

     
    Transactions and Transaction Logs analysis. In 2020 
    TxSpector [103] was the first generic framework to perform 
    bytecode-level, 
    logic-driven 
    analysis 
    on 
    Ethereum 
    transactions for attack detection, such as Reentrancy, 
    UncheckedCall, 
    Suicidal 
    Vulnerability, 
    Timestamp 
    Dependence, Misuse-of-Origin, Failed Send, Mishandled 
    Exception, Unsecured Balance, and DoS. Based on the 
    transaction logs, an Ever-evolving Game was presented also 
    in 2020 to analyze attacks in real-world and defenses adopted 
    in the wild [104].
    Honeypot Smart Contracts. Instead of exploit the 
    vulnerabilities of smart contracts, hackers developed 
    honeypot smart contract with hidden traps, and H
    ONEY
    B
    ADGER
    was developed in 2019 to analyze more than 2 million smart 
    contracts and identify 690 honeypot smart contract [105]. 
    Consensus Algorithm Analysis. In 2016 a group of 
    researchers from ETH Zurich and NEC Laboratories 
    presented a framework to quantitatively analyze the PoW’s 
    security and performance [106]. In 2019 Zhang and Preneel 
    evaluated and showed that PoW could not achieve the ideal 
    chain quality and could not be resistant against attacks of 
    selfish mining, double-spending and feather-forking [107]. 
    B. Detecting Malicious Codes & Bugs 
    In 2018 Jiang et al. proposed Contractfuzzer to fuzz smart 
    contracts to detect vulnerability [108], Liu et al. presented 
    Reguard of a fuzzing-based analyzer in their demo paper to 
    automatically detect the reentrancy bugs of the most common 
    bug type in the smart contracts [109], and Hydra was 
    developed by Breidenbach et al. to use bug bounties to enable 
    rewarding of critical bugs and runtime detection [91]. In 2019, 
    EVMFuzzer was proposed to use differential fuzzing 
    technique by continuously generating seed contracts as input 
    to the target EVM and base on the execution results to detect 
    vulnerabilities of EVM [110]. In 2020, a lightweight test-
    generation approach - HARVEY was presented to effectively 
    detect security vulnerabilities and bugs for smart contracts 
    [111]. 
    C. Core Software Codes Security 
    In 2017 SmartPool as a decentralized mining pool was 
    designed to prevent the phenomenon that close 80% of 
    Ethereum’s and 95% of Bitcoin’s mining power resided with 
    less than six and ten mining pools respectively [112]. In 2019 
    Drijvers et al. pointed out subtle flaws with the two-round 
    multi-signature scheme and then proposed mBCJ as a 
    provably secure yet highly efficient alternative [113]. In 2020 
    Drijvers et al. presented Pixel, a pairing-based forward-secure 
    multisignature scheme, against posterior corruptions attack 
    [114], and Sun et al. presented Counter-RAPTOR to mitigate 
    and detect active routing attacks [115]. 
    D. Secure Smart Contract 
    In 2016 Luu et al. presented methods to enhance Ethereum 
    operational semantics to reduce the smart contracts’ 
    vulnerabilities [96]. In 2016, Town Crier was developed to 
    ensure only authenticated data to be input into the smart 
    contracts [116]. In 2018 FSolidM was presented as a tool to 
    enable the developers defining secure smart contracts as FSMs 
    (finite state machines) and enhance security and functionality 
    [117], and Arbitrum was designed to verify off-chain on what 
    a VM would do so as to improve scalability and privacy [118]. 
    In 2020 a research group from Korea University described 
    V
    ERI
    S
    MART
    to ensure arithmetic safety to address security 
    concerns of Ethereum smart contracts [119]. 
    E. Smart Contract Verification 
    In 2018 Amani et al. created a program logic at the 
    bytecode level to extend an existing EVM formalisation so as 
    to formally verify EVM smart contracts [120], and a formal 
    modeling approach was proposed by Abdellatif & 
    Brousmiche to verify the Blockchain and users’ behavior of 
    the smart contract [121]. In 2020 Sun & Yu established a 
    framework to verify the security vulnerabilities of smart 
    contracts, e.g., the Binance Coin (BNB) contract [122], and 
    Permenev et al. presented VerX to verify the functional 
    properties of smart contract of Ethereum automatically [123]. 
    Journal Pre-proof


    T
    ABLE 
    VIII.
    S
    MART 
    C
    ONTRACT 
    B
    YTECODE 
    V
    ULNERABILITY 
    A
    NALYSIS 
    T
    OOLS AND 
    F
    EATURE 
    C
    OMPARISON

    Download 0,66 Mb.
    1   ...   9   10   11   12   13   14   15   16   ...   28




    Download 0,66 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Transactions and Transaction Logs analysis

    Download 0,66 Mb.
    Pdf ko'rish