|
Andijon mashinasozlik instituti transport va logistika fakulteti Mm va Tx yo‘nalishi k-45-22 guruh
|
bet | 3/5 | Sana | 09.12.2023 | Hajmi | 0,58 Mb. | | #114658 |
Bog'liq Kompleks o’zgaruvchili funksiyaning integrali va uni hisoblashKoshi teoremasi.
Demak, biz bilamiz: – polinom. Savol tug’iladi “Golomorf funksiyadan olingan integral nolga tengmi yoki yo’q?”.
Bunga Koshi teoremasi javob beradi.
Javob salbiy. Agar f faqat ni ustida golomorf bo’lsa.
Masalan:
demak yuk.
1). Koshi teoremasi.
Teorema: Agar funksiya bir bog’lamli sohada golomorf bo’lsa, u holda funksiyaning sohada yotuvchi har qanday silliq, (bo’lakli silliq) yopiq chiziq bo’yicha integrali nolga teng bo’ladi:
Isbot: 1-hol. uchburchak chegarasi bo’lgan xol. Bu uchburchakni perimetri P ga teng bo’lsin. Teskarisini faraz qilamiz, ya’ni teorema shartlari bajarilsinu, lekin
bo’lsin.
-uchburchakni, uning tomonlari o’rtalarini birlashtiruvchi to’g’ri chiziq kesmalari yordamida 4 ta
uchburchaklarga ajratamiz.
Natijada quyidagi munosabatga kelamiz
Ravshanki,
bu tengsizlikning o’ng tomonidagi qo’shiluvchilardan kamida bittasi dan kichik bo’lmaydi, shu uchburchakni deb belgilaymiz, ya’ni
- uchburchakning perimetri ga teng.
Endi uchburchakka yuqoridagi usul bilan yana 4 ta
uchburchaklarga ajratamiz. Bu uchburchaklar orasida shunday uchburchakning perimetri ga teng.
Bu jarayonni cheksiz davom ettira boramiz.
Natijada: uchburchaklar ketma-ketligi hosil bo’ladi. Bu uchburchaklar ketma-ketligi uchun:
uchburchakning perimetri ga teng va da
h ar bir (n=1,2,…) uchburchak uchun
bo’ladi.
va 2) tasdiqlardan barcha uchburchaklarga tegishli bo’lgan yagona nuqta mavjud bo’lishi kelib chiqadi.
Shartlarga ko’ra f(z) funksiya nuqtada golomorf. Demak, son olinganda ham shunday son topiladiki,
tengsizlikni qanoatlantiruvchi barcha z lar uchun
ya’ni
bo’ladi.
Endi biz bilamizki,
va n ning etarli katta qiymatlarida
bo’ladi.
Demak,
va (2) dan
bo’lishi kelib chiqadi. Demak,
.
Bu tengsizlik M>0 deb qilingan farazga zid. (chunki ixtiyoriy musbat son). Ziddiyatlik bo’lmasligi uchun M=0 bo’lishi kerak.
|
| |