• Copyright Form
  • Submit your manuscript to a JScholar journal and benefit from
  • Evolution to Big Data Analytics Techniques




    Download 474,75 Kb.
    Pdf ko'rish
    bet8/8
    Sana20.05.2024
    Hajmi474,75 Kb.
    #245707
    1   2   3   4   5   6   7   8
    Bog'liq
    2.1 ga oid

    Evolution to Big Data Analytics Techniques
    Due to the increment of data volume have made the 
    well-known data mining algorithms unsuitable for such data siz-
    es. Therefore, many studies have currently been directed towards 
    improvements that data mining techniques can handle Big Data. 
    Big data analytic techniques are concerned with several data 
    mining functions, where the most important functions are: asso-
    ciation rules mining and classification tree analysis.
    In [12] paper, it analyzed the main data mining tasks 
    which can adopt big data analytics techniques and “V” dimen-
    sions of big data.
    Table 1 represents a summary of the analysis done for 
    the evolution of data mining tasks to big data analytics.


    6
    JScholar Publishers
    J Comput Sci Software Dev 2022 | Vol 2: 303
    Conclusion
    Now, we are in big data time, and there is a growing 
    demand for tools which can process and analyze it. Big data 
    analytics deals with extracting valuable information from that 
    massive data which can’t be handled by traditional data mining 
    tools. In this paper, we discuss big data mining, it characteris-
    tics, challenges and algorithms used to deal with big data mining 
    efficiently
    . Also provide some techniques of big data mining: 
    Hadoop framework and MapReduce framework. Big data min-
    ing can be in many different applications in enterprises, social 
    networks and mobile clouds. Finally, we discuss some of big data 
    analytics techniques and its evolution.
    Copyright Form
    The copyright format belongs to IEEE 2012.


    7
    JScholar Publishers
    J Comput Sci Software Dev 2022 | Vol 2: 303
    References
    1. 
    Kumar Manish, Baluja G, Sahu Dinesh (2017) 
    Conceptualizing Big Data Analytics Through Hadoop,” 
    COMPUSOFT an International Journal of Advanced Computer 
    Technology 6: 5. 
    2. 
    Muttipati Appala, Akkinapalli Koushik, Santhosh Ea-
    gala (2017) “Big Data: Challenges and Solutions,” International 
    Journal of Computer Science and Engineering 5: 10.
    3. 
    Albarznji Kamal, Atanassov Atanas(2016) ” A Survey 
    of Big Data Mining: Challenges and Techniques,” Proceedings 
    of 24th International Symposium “Control of Energy, Industrial 
    and Ecological Systems”.
    4. 
    Jaseena KU, Julie M David (2014) “Issues, Challenges, 
    and Solutions: Big Data Mining,” Computer Science & Informa-
    tion Technology.
    5. 
    Bibhudutta Jena, Mahendra Kumar Gourisaria, Sid-
    dharth Swarup Rautaray, Manjusha P (2017) “A Survey Work on 
    Optimization Techniques Utilizing Map Reduce Framework in 
    Hadoop Cluster “ I.J. Intelligent Systems and Applications.
    6. 
    Dominic Ehiwe, Kayode Akinola, Akpovi Ominike 
    (2016) “Enterprise Big Data: Case Study of Issues and Challenges 
    for Businesses in Finance and Retail Sectors”, International Jour-
    nal of Applied Information Systems 11: 4.
    7. 
    Shalika Jaiswal, Amandeep Singh Walia(2017) “Big 
    Data and Hadoop Challenges and Issues”, International Journal 
    of Advanced Research in Computer Science 8: 4.
    8. 
    Shobha Rani, B Rama (2017) “MapReduce with Ha-
    doop for Simplified Analysis of Big Data “ 8: 5.
    9. 
    P Nandhini, M Pavithra, R Suganya (2018) “ Big Data 
    with Data Mining”, IJSRSET 4.
    10. 
    Alhaddad Ebraheem, Eassa Fathy (2018)” Performance 
    Improvement Techniques for MapReduce - A Survey,” Interna-
    tional Journal of Computer Science and Mobile Computing 7: 4.
    11. 
    Rohit Pitre, Vijay Kolekar (2014) “A Survey Paper on 
    Data Mining with Big Data”, International Journal of Innovative 
    Research in Advanced Engineering 1.
    12. 
    Tiju Cherian, Hrushabh Bhadkamkar (2017) “A Study 
    and Survey of Big Data Using Data Mining Techniques”, Interna-
    tional Journal of Engineering Sciences & Research Technology 3.
    13. 
    AS Hashmi, T Ahmed (2016) “Big Data Mining: Tools 
    & Algorithms”, International Journal of Recent Contributions 
    from Engineering, Science & IT (iJES).
    14. 
    Ashish Bindra, Sreenivasulu Pokuri, Krishna Uppala, 
    Ankur Teredesai (2012) “Distributed Big Advertiser Data Min-
    ing”, International Conference on Data Mining Workshops.
    15. 
    Bina Kotiyal, Ankit Kumar, Bhaskar Pant, RH Goudal 
    (2013) “Big Data: Mining of Log File through Hadoop”, Interna-
    tional Conference on Human Computer Interactions (ICHCI).
    16. 
    Al Aghbari, Zaher (2015) “Mining Big Data: Challenges 
    and Opportunities”, International Conference on Enterprise In-
    formation Systems, Proceedings.
    17. 
    Alotaibi Nojod, Abdullah Manal (2016) “Big Data Min-
    ing: A classification perspective”, International Conference on 
    Communication, Management and Information Technology IC-
    CMIT’.
    18. 
    Jinlong Wang, Jing Liu, Russell Higgs, Li Zhou, Chuanai 
    Zhou (2017) “The Application of Data Mining Technology to Big 
    Data”, IEEE International Conference on Computational Science 
    and Engineering (CSE) and IEEE International Conference on 
    Embedded and Ubiquitous Computing (EUC).
    19. 
    Petar Ristoski, Heiko Paulheim (2016) “Semantic Web 
    in data mining and knowledge discovery: A comprehensive sur-
    vey”, Journal of Web Semantics 36.
    20. 
    Cemil Colak, Esra Karaman, M GokhanTurtay (2015) 
    “Application of knowledge discovery process on the prediction of 
    stroke”, Computer Methods and Programs in Biomedicine 119.
    21. 
    Francesco Gullo (2015) “From Patterns in Data to 
    Knowledge Discovery: What Data Mining Can Do”, Physics Pro-
    cedia 62.


    8
    JScholar Publishers
    J Comput Sci Software Dev 2022 | Vol 2: 303
    Submit your manuscript at 
    http://www.jscholaronline.org/submit-manuscript.php
    Submit your manuscript to a JScholar journal 
    and benefit from:

    Convenient online submission

    Rigorous peer review

    Immediate publication on acceptance

    Open access: articles freely available online

    High visibility within the field

    Better discount for your subsequent articles
    View publication stats

    Download 474,75 Kb.
    1   2   3   4   5   6   7   8




    Download 474,75 Kb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Evolution to Big Data Analytics Techniques

    Download 474,75 Kb.
    Pdf ko'rish