• Data Mining Algorithms
  • Classification
  • Decision Trees
  • Article · October 2022 doi: 10. 17303/jcssd




    Download 474,75 Kb.
    Pdf ko'rish
    bet4/8
    Sana20.05.2024
    Hajmi474,75 Kb.
    #245707
    1   2   3   4   5   6   7   8
    Bog'liq
    2.1 ga oid

     
    1. Data Selection:
    selecting proper data and relevant 
    variables, on which discovery has to be performed.
     
    2. Data Processing
    : this step aims to make the data 
    clean by replacing missing values, removing noise and outliers.
     
    3. Data Transformation
    : reducing and projecting the 
    data in order to obtain a suitable form that data mining algo-
    rithms can be implement.
     
    4. Data Mining:
    choosing a proper data mining meth-
    od (classification, clustering or regression), suitable algorithm to 
    perform the task, and extracting the patterns.
     
    5. Evaluation and Interpretation
    : this is the last step, 
    the patterns extracted and now the user interprets and extracts 
    the knowledge from the patterns. This step includes visualization 
    of extracted patterns and models, or visualization of data using 
    the extracted models [19,20].
    Data Mining Algorithms
    In present’s world of big data, a large database is becoming 
    a necessity. Just imagine there present a database with many tera-
    bytes. As Facebook alone handles 600 terabytes of new data every 
    single day. Also, the primary challenge of big data is how to make 
    sense of it. Moreover, the big volume is not the only problem. Also, 
    big data need to diverse, unstructure and fast changing. Consid-
    er audio and video data, social media posts, 3D data or geospatial 
    data. This kind of data is not easily categorized or organized. addi-
    tional, to meet this challenge, a many of algorithms for extracting 
    information or data mining. In this section, we discuss a variety 
    of learning algorithms including k-means, decision trees, classifica-
    tion algorithms, neural network, Naive Bayes, K Nearest Neighbors 
    Algorithm, association, regression, and ID3 algorithm. And here, 
    We’ll talk about the details of the most commonly used algorithms:
    Classification
    Classification is a more complex data mining algo-
    rithm that forces you to collect various attributes together into 
    discernible categories, which you can then use to draw further 
    conclusions, or serve some function. For example, if you are 
    evaluating data on individual customers’ financial backgrounds 
    and purchase histories, you might be able to classify them as 
    low, medium, or high credit risks. You could then use these 
    classifications to learn even more about those customers
    Decision Trees
    A graphical representation of a collection of classifica-
    tion rules. Given a data record, the tree directs the record from 
    the root to a leaf. Each internal node denotes a test on an attri-
    bute, each branch denotes the outcome of a test, and each leaf 
    node holds a class label. The topmost node in the tree is the root 
    node.

    Download 474,75 Kb.
    1   2   3   4   5   6   7   8




    Download 474,75 Kb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Article · October 2022 doi: 10. 17303/jcssd

    Download 474,75 Kb.
    Pdf ko'rish