|
Kubik splayn bilan intеrpolyatsilash jarayonining yaqinlashishi
|
bet | 4/5 | Sana | 14.05.2024 | Hajmi | 0,6 Mb. | | #231581 |
Bog'liq alg mus 17Kubik splayn bilan intеrpolyatsilash jarayonining yaqinlashishi
Bu yеrda kubik intеrpolyatsion splaynlarning tugun nuqtalar soni N chеksizga intilganda intеrpolyatsiyalanuvchi funksiyaga intilishini ko`rsatamiz. Intеrpolyatsion splayn bilan orasidagi farq funktsiya silliqlik tartibiga va tugun nuqtalarning joylashishiga bog`liq. Soddalik uchun nuqtalari tеkis joylashgan to`rlar kеtma-kеtligini qaraymiz:
bu yеrda Bu holda (3)- sistеma ko`rinishi quyidagicha bo`ladi
Bunda
Interpolyatsion kvadratur formulalar
Integral ostidagi funksiyani 2 o’lchovli interpolyatsion ko’phаd bilan almashtiramiz.
Agar Li(x, у) ko’phadlarni quyidagicha
aniqlab olsak, u holda
(6)
Ko’phad (xi, uj) nuqtada f(xi, uj) qiymatni qabul qiladi. Integral ostidagi funksiyani (6) bilan almashtiramiz:
bu yerda
Bo’lib, uni murakkab bo’lmagan sohalar uchun hisoblash qiyin emas. Faraz qilaylik, soha to’g’ri to’rtburchak bo’lsin: (а х b; с у d). Integrallash to’ri sifatida
хi=а+ih, уj = с +jk
to’g’ri chiziqlarning kesishishlaridan hosil bo’lgan nuqtalar to’plamini olamiz, u holda quyidagi interpolyatsion formulaga ega bo’lamiz:
Buni to’g’ri turtburchak bo’ylab integrallasak
hosil bo’ladi, bu yerda
yoki ko’rinishda yozish mumkin, I i,m+1 va Ij,n+1 lar esa Nyuton-Kotes formulasining koeffisiyentlaridir.
Trapetsiya usuli
program trapesiya;
var n,i,k:integer; a,b,h,s:real;
function f(x:real):real; begin f:=x*x end; procedure trap(a,b:real;n:integer; var s:real); var i:integer; h:real;
begin h:=(b-a)/n; s:=(f(a)+f(b))/2;
for i:=1 to n-1 do s:=s+f(a+i*h); s:=s*h; end; begin
write('a,b,n=');readln(a,b,n); trap(a,b,n,s);
writeln('S=',s); end.
Programma asosida eksperimentlar o’tkazamiz. a,b,n=0 1 10 S=0.335
a,b,n=0 1 20 S=0.33375
a,b,n=0 1 100 S=0.33335
a,b,n=0 1 1000 S=0.3333335
Natija to’g’riligi ko’rinib turibdi.
|
| |