• Rasm 12. Tenglamalar sistemasini Gauss usulida yechish.
  • Rasm 42. Ko’p shartli va ko’p takrolanuvchi jarayonli algoritmning blok Sxemasi. Gauss usulida tenglamalar sistemasini yechish uchun blok Sxema




    Download 15,08 Mb.
    bet90/135
    Sana22.05.2024
    Hajmi15,08 Mb.
    #250347
    1   ...   86   87   88   89   90   91   92   93   ...   135
    Bog'liq
    Fizik jarayonlarni kompyuterda modellashtirish

    Rasm 42. Ko’p shartli va ko’p takrolanuvchi jarayonli algoritmning blok Sxemasi. Gauss usulida tenglamalar sistemasini yechish uchun blok Sxema.
    Yuqoridagi blok sxema dasturni ishga tushirish uchun zarur buyruqlar tartibidir. Lekin quyidagi programmada esa buyruqlar blok sexmadagidan ko’p. chunki ko’p buyruqlar porgramma naijasini ko’rishdagi dizayn, natijani chiqarishda qulaylik yaratish uchun yozilgan.


    ]



    Rasm 12. Tenglamalar sistemasini Gauss usulida yechish.
    2-misol Y=ax2+bx+c kvadrat tenglamasining korenlar sonini toppish va kelip shiqish sabablarini aniqlovshi dastur tuzish. Bunda biz C++ dasturlash tilining tarmoqlanuvshi algoritmidan foydalanamiz.
    Dastur kodi:
    1 #include
    2 #include
    3 using namespace std;
    4 int main()
    5 { float a,b,c,x,x1,x2,D;
    6 cout<<”a=”;cin >>a;
    7 cout<<”b=”;cin >>b;
    8 cout<<”c=”;cin >>c;
    9 D=b*b-4*a*c;
    10 If (D>0)
    11 {x1=(-b-sqrt(D))/2*a;
    12 X==(-b+sqrt(D))/2*a;
    13 cout<<”x1=”<14 cout<<”x2=”<15 }
    16 If (D==0)
    17 { x=-b/2*a;
    18 cout<<”x=”<19 If (D<0)
    20 {cout<<”yechimga ega emas”<21 return 0;
    22 }
    Kvadrat tenglamaning yechimini Python dasturlash tilida amalga oshiramiz:
    import math
    print("Tenglama uchun koeffitsientlarni kiriting")
    print("ax^2 + bx + c = 0:")
    a = float(input("a = "))
    b = float(input("b = "))
    c = float(input("c = "))
    discr = b ** 2 - 4 * a * c
    print("Diskriminant D = %.2f" % discr)
    if discr > 0:
    x1 = (-b + math.sqrt(discr)) / (2 * a)
    x2 = (-b - math.sqrt(discr)) / (2 * a)
    print("x1 = %.2f \nx2 = %.2f" % (x1, x2))
    elif discr == 0:
    x = -b / (2 * a)

    Download 15,08 Mb.
    1   ...   86   87   88   89   90   91   92   93   ...   135




    Download 15,08 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Rasm 42. Ko’p shartli va ko’p takrolanuvchi jarayonli algoritmning blok Sxemasi. Gauss usulida tenglamalar sistemasini yechish uchun blok Sxema

    Download 15,08 Mb.