• Regression (Regressiya)
  • Clustering (Qo‘shma tahlil)
  • Sinfi tanib olish (Classification)




    Download 5,69 Mb.
    bet101/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   97   98   99   100   101   102   103   104   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    Sinfi tanib olish (Classification):
    Bu usulda, ma’lumotlar bir yoki bir nechta sinflarga bo‘linadi. Algoritmlar modelni o‘qitishda ta’lim ma’lumotlaridan foydalaniladi va keyinchalik model test ma’lumotlariga qo‘yiladi.
    Logistic Regression: Oddiy, lekin samarali tanib olish usuli.
    from sklearn.linear_model import LogisticRegression
    model = LogisticRegression()
    K-Nearest Neighbors (KNN): Sinfni o‘rganishda o‘xshash sinflardagi eng yaqin obyektlarni qo‘llash.
    from sklearn.neighbors import KNeighborsClassifier
    model = KNeighborsClassifier()
    Support Vector Machines (SVM): Ma’lumotlarni sinflar orasida ajratib bo‘lish uchun ishlatiladi.
    from sklearn.svm import SVC
    model = SVC()
    Decision Trees va Random Forests: Qaror qabul qilish va bag’rikdosh modellarini yaratish.
    from sklearn.tree import DecisionTreeClassifier
    model = DecisionTreeClassifier()
    from sklearn.ensemble import RandomForestClassifier
    model = RandomForestClassifier()
    Regression (Regressiya):
    Bu usulda ma’lumotlar sonli qiymatlarga ega bo‘lgan qisqaqtirish vaqtida o‘rganiladi. Mashhur regressiya algoritm turlari:
    Linear Regression: O‘qitish ma’lumotlariga mos ravishda o‘zgaruvchilarni aniqlaydi.
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    Ridge va Lasso Regression: Katta o‘zgaruvchilarni kuchaytirish yoki yashirish uchun ishlatiladi.
    from sklearn.linear_model import Ridge
    model = Ridge()
    from sklearn.linear_model import Lasso
    model = Lasso()
    Clustering (Qo‘shma tahlil):
    Bu usulda, ma’lumotlar bir-biri bilan o‘xshash obyektlar bo‘ylab guruhlarga bo‘linadi.
    K-Means Clustering: Ma’lumotlarni bir nechta guruhlarga ajratish uchun ishlatiladi.
    from sklearn.cluster import KMeans
    model = KMeans(n_clusters=3)
    Hierarchical Clustering: Qo‘shma tahlilni ilgariy qo‘shish vaqtida o‘rganish.
    from sklearn.cluster import AgglomerativeClustering
    model = AgglomerativeClustering(n_clusters=3)

    Download 5,69 Mb.
    1   ...   97   98   99   100   101   102   103   104   ...   182




    Download 5,69 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Sinfi tanib olish (Classification)

    Download 5,69 Mb.