• Xususiyatlarni chiqarish
  • Python yordamida mashina o‘rganishda tasvirni qayta ishlashni qo‘llash




    Download 5,69 Mb.
    bet89/182
    Sana19.05.2024
    Hajmi5,69 Mb.
    #244351
    1   ...   85   86   87   88   89   90   91   92   ...   182
    Bog'liq
    Python sun\'iy intellekt texnologiyasi Dasrlik 2024

    Python yordamida mashina o‘rganishda tasvirni qayta ishlashni qo‘llash
    Sayohatning ushbu qismida biz tasvirimizdan xususiyatlarni qanday olishimiz va bu xususiyatlardan Machine Learning modelimiz xususiyatlari sifatida foydalanishimiz mumkinligini muhokama qilamiz. Bizning holatimiz uchun biz tasniflash qilamiz.
    Muhokama davomida biz quyidagi kutubxonalardan foydalanamiz.
    # Basic imports
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    # Image Processing
    from skimage.io import imread, imshow
    from skimage.color import rgb2gray
    from skimage.morphology import opening
    from skimage.measure import label, regionprops
    from skimage.filters import threshold_otsu
    Xususiyatlarni chiqarish
    Ushbu xususiyatlarni namunali rasmda olish uchun quvur liniyasini yaratish orqali ushbu usulni qo‘llaymiz. Bizning misolimiz uchun biz quyidagi rasmdan foydalanamiz.
    # Load the image
    img = imread('TS_midnights.jpg’)[:, :, :3]
    # Plot the image
    fig, ax = plt.subplots(1, 1, figsize=(5, 5))
    ax.imshow(img)
    ax.set_title("Midnights Album Cover")
    ax.set_axis_off()
    plt.show()

    7.1.3-rasm. Xususiyatlarni chiqarish
    Ushbu rasmning xususiyatlarini matn sarlavhasida aniqlaymiz.
    # Preprocess image by grayscaling and binarizing
    image_gs = rgb2gray(img[100:180, 120:400, :3])
    thresh = threshold_otsu(image_gs)
    image_bw = image_gs < thresh
    image_clean = image_bw.copy()
    # Image cleanining through morphological operation
    image_clean = image_bw.copy()
    image_clean = opening(image_clean)
    # Get the properties of objects
    image_labels = label(image_clean)
    image_props = regionprops(image_labels)
    # Plot the image
    fig, ax = plt.subplots(2, 1, figsize=(5, 5))
    ax[0].imshow(image_bw, cmap='gray')
    ax[0].set_title("Cut-out text in Midnights Album")
    ax[0].set_axis_off()
    ax[1].imshow(leaf_props[0].image, cmap='gray')
    ax[1].set_title("Text M in the Title")
    ax[1].set_xticks([])
    ax[1].set_yticks([])
    ax[1].set_xticklabels([])
    ax[1].set_yticklabels([])
    plt.show()
    # Print out the properties of this letter
    print(f'Area: {image_props[0].area:.2f}')
    print(f'Perimeter: {image_props[0].perimeter:.2f}')
    print(f'Bounding Box Area: {image_props[0].bbox_area:.2f}')
    print(f'Convex Area: {image_props[0].convex_area:.2f}')
    print(f'Eccentricity: {image_props[0].eccentricity:.2f}')
    print(f'Major Axis Length : {image_props[0].major_axis_length:.2f}')
    print(f'Minor Axis Length: {image_props[0].minor_axis_length:.2f}')
    print(f'Solidity: {image_props[0].solidity:.2f}')

    7.1.4-rasm.Midnights oynasi
    Area: 934.00
    Perimeter: 268.57
    Bounding Box Area: 1332.00
    Convex Area: 1328.00
    Eccentricity: 0.48
    Major Axis Length : 46.44
    Minor Axis Length: 40.79
    Solidity: 0.70
    Ushbu xususiyatlardan mashinali o‘qitish modelining xususiyatlari sifatida foydalanib, biz tasniflashimiz mumkin. Hozircha bu ahamiyatsiz, chunki biz ushbu rasmda hech narsani tasniflamaymiz.

    Download 5,69 Mb.
    1   ...   85   86   87   88   89   90   91   92   ...   182




    Download 5,69 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Python yordamida mashina o‘rganishda tasvirni qayta ishlashni qo‘llash

    Download 5,69 Mb.