• Tengsizliklar va tenglamalar sistemalarini yechish 1-misol
  • Sonli differensiallash va integrallash Polinomning hosilasini hisoblashda polyder, funksiyaning hosilasini hisoblashda diff komandalaridan foydalanish mumkin. 1-misol.
  • Berilgan sistemaning eng kichik kvadratlar usuli bilan yechish



    bet78/141
    Sana15.01.2024
    Hajmi
    #138013
    1   ...   74   75   76   77   78   79   80   81   ...   141
    Bog'liq
    KM majmua (1)

    Berilgan sistemaning eng kichik kvadratlar usuli bilan yechish
    >> A=[21 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6];
    % sistemaning matrisa
    >> B=[8;9;-5;0]
    %o’ng tomonlarining ustun vektori
    >> x=lsqr(A,B)
    % chiziqli sistemani yechish uchun % biriktirilgan funksiya (eng kichik kvadratlar
    usuli)
    x =
    3.0000 -4.0000 -1.0000 1.0000
    MATLAB 2014A da
    >> A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6];
    B=[ 8;9;-5;0];
    x=lsqr(A,B)
    lsqr converged at iteration 4to a solution with relative residual 1.
    7e-11
    x =
    3.0000
    -4.0000
    -1.0000
    1.0000
    Tengsizliklar va tenglamalar sistemalarini yechish
    1-misol
    2 <
    x − 2
    x + 3
    Tenglikni yeching
    Yechish:
    >>maple(‘solve’,’{(x-2)/(x+3)>2}’,x)
    ans =
    {-8 < x , x< -3 }
    Tengsizlikni yechimi
    -8 < x < < -3.
    2-misol
    ≤ 51 ,
    √ √ − 1 < 10.69 ≤ 10x
    2
    + 4x
    Tengsizlik sistemasini yeching


    197
    Yechish:
    >> maple(‘solve’,’{(x-2)/(x+3)<=51, sqr(x) *(sqrt(x)-1) <10,10*x^2+4*x>=69}’,x)
    ans =
    {-1/5+1/10*694^(1/2)<= x, x < 21/2+1/2*41^(1/2)}
    >> vpa(ans,4)
    ans =
    {2.434 <= x, x < 13.70 }
    Tengsizliklar sistemasida aniq yechimi
    - +
    ( )
    ≤ x, x<
    +
    ( )
    .
    Va taqribiy yechimi
    2,434
    ≤ x <13,70
    Sonli differensiallash va integrallash
    Polinomning hosilasini hisoblashda polyder, funksiyaning hosilasini hisoblashda
    diff komandalaridan foydalanish mumkin.
    1-misol. P(x)=x
    5
    + x
    3
    + 1 polinomning hosilasi.
    >> P=[ 1 0 1 0 0 1 ];
    % berilgan polinom koeffitsentlarining vektori
    >> P1 (x) koeffitsentlarining vektori
    P1 =
    5 0 3 0 0
    Yani P’ (x) = 5x
    4
    + 3x
    2
    2-misol. Y = sin(x) funksiya hosilasining taqribiy qiymatini hisoblash.
    >> x=0:.05:10;
    % argumentlar vektori
    >>y=sin(x);
    %funksiya qiymatlarining vektori
    >>d=diff(y);
    % qo’shni elementlar ayirmalarining vektori: d=[y(2)-y(1),…,y(n)-y(n-1)]
    >>pr=d/0.05;
    % hosila qiymatlarining vektori
    >>pr(5)
    %hosila x=x(5)=0.2 dagi qiymati
    0.9747
    >>cos(x(5))
    % aniq qiymat bilan taqqoslash
    0.9801
    Funksiyaning hosilasini hisoblash uchun trapetsiyalar va Simson usullariga mos
    keluvchi trapz va quad komandalaridan foydalaniladi.


    198
    ∙ 3-misol. (e 2x - 1) dx integralni trapetsiyalar va Simpson usullari bilan
    hisoblash.
    1 – trapetsiyalar usuli:
    >> h=0.001; x=0:h:1;
    >> y=exp(2*x)-1;
    >> int=trapz(y)*h
    Int=
    2.1945
    2 – Simpson usuli:
    >> int=quad(‘exp(2*x)-1’,0,1,1.0e-5)
    Int = 2.1945

    Download
    1   ...   74   75   76   77   78   79   80   81   ...   141




    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Berilgan sistemaning eng kichik kvadratlar usuli bilan yechish