|
c = 1:3; r = 7:10; H = hankel(c, r)
|
bet | 8/8 | Sana | 27.05.2024 | Hajmi | 232,03 Kb. | | #255039 |
Bog'liq Matlab tizimida matritsalar ustida arifmetik amallar bajarish3 0 0
c = 1:3; r = 7:10; H = hankel(c, r)
Warning: Column wins anti-diagonal conflict.
HILB, INVHILB - Gelbert matritsasini (Hilbert matrix) hosil qiladi.
Sintaksisi:
H = hilb(n)
H = invhilb(n)
Misol. 4 - taribli Gilbert matritsasi 1.5514e+004 shartli songa ega bo’lsin. Uning teskari matritsasi-butun sonli matritsa ko’rinishi quyidagicha bo’ladi:
invhilb(4)
ans = 16
-120
-120 240
1200 -2700
-2700 6480
1680 -4200
-140
1680
-4200
2800
240
-140
Natijani qo’zg’aluvchi vergulli sonlar ko’rinishida tasvirlasak quiydagi hosil bo’ladi:
format long e,
inv(hilb(4))
1.0e+ 003
MAGIC - Sehirli kvadratni hosil qiladi.
Sintaksisi: M = magic(n)
Ushbu funksiyani qo’llanilishi bilan bog’liq grafiklar :
Mos keluvchi funksiyalar: RAND, ONES.
PASCAL - Paskal matritasasini (Pascal matrix) hosil qiladi.
Sintaksisi:
P = pascal(n)
P = pascal(n, k)
Misol:
>> n=4
n =
4
>> a=pascal(n)
a =
1
1
1
1
1 1
2 3
3 6
4 10
1
4
10
20
>>a=pascal(n,1)
a =
1
1
0
0
0
-1
0
0
0
1
1
-2
1
-3
3
-1
ROSSER - Resser matritsasini (Rosser matrix) hosil qiladi.
Sintaksisi:
R = rosser
Misol.
>> R=rosser R =
TOEPLITZ - Tiplets matritsasini (Toeplitz matrix) hosil qiladi.
Sintaksisi:
T = toeplitz(c);
T = toeplitz(c, r).
Misol.
c=1:4; T = toeplitz(c)
VANDER - Vandermond matritsasini (Vandermonde matrix) hosil qiladi.
Sintaksisi: V = vander(x).
Misol: x = [1 2 3 4]; V = vander(x).
WILKINSON - Uilkenson matritsasini (Wilkinson matrix) hosil qiladi.
Sintaksisi: W = wilkinson(n).
Misol: W = wilkinson(7):
|
| |