|
Mustaqil ishi-3 topshirgan: Rajabov d qabul qilgan: Ochilova s qarshi-2023 Neyron tarmoqlarga kirish
|
bet | 3/5 | Sana | 28.12.2023 | Hajmi | 0,65 Mb. | | #128925 |
Bog'liq 3-MISH RAJABOV Dilshod4. Konvolyutsion Neyron Tarmoq
An'anaviy ikki o'lchovli massivdan farqli o'laroq, konvolyutsion neyron tarmog'i neyronlarning uch o'lchovli konfiguratsiyasiga ega. Birinchi qatlam konvolyutsion qatlam sifatida tanilgan. Konvolyutsion qatlamdagi har bir neyron faqat ko'rish maydonining cheklangan qismidagi ma'lumotlarni qayta ishlaydi. Filtr kabi, kiritish xususiyatlari ommaviy rejimda olinadi.
Tarmoq bo'limlardagi rasmlarni tushunadi va butun tasvirni qayta ishlashni tugatish uchun bu amallarni bir necha marta bajarishi mumkin.
Rasm qayta ishlash jarayonida RGB yoki HSI dan kulrang rangga o'zgartiriladi. Piksel qiymatining keyingi o'zgarishlari qirralarni aniqlashga yordam beradi va rasmlarni bir nechta guruhlarga ajratish mumkin. Bir yo'nalishli tarqalish CNN bir yoki bir nechta konvolyutsion qatlamlarni o'z ichiga olgan holda sodir bo'ladi, shundan so'ng birlashma va ikki tomonlama tarqalish konvolyutsiya qatlamining chiqishi tasvirni tasniflash uchun to'liq ulangan neyron tarmoqqa yuborilganda sodir bo'ladi.
Tasvirning ayrim elementlarini ajratib olish uchun filtrlardan foydalaniladi. MLP da kirishlar o'lchanadi va faollashtirish funktsiyasiga kiritiladi. RELU konvolyutsiyada ishlatiladi, MLP esa chiziqli bo'lmagan faollashtirish funktsiyasidan so'ng softmaxdan foydalanadi. Rasm va videoni aniqlash, semantik tahlil qilish va parafrazni aniqlashda konvolyutsion neyron tarmoqlar ajoyib natijalar beradi.
5. Radial Bias Tarmog'i
Kirish vektoridan keyin RBF neyronlari qatlami va Radial Basis Function Networkdagi har bir toifa uchun bitta tugunli chiqish qatlami keladi. Kirish har bir neyron prototipini saqlaydigan o'quv majmuasidagi ma'lumotlar nuqtalari bilan taqqoslash yo'li bilan tasniflanadi. Bu o'quv majmuasining misollaridan biridir.
Har bir neyron yangi kirish vektori [siz turkumlashtirmoqchi bo'lgan n o'lchovli vektor] tasniflanishi kerak bo'lganda, kirish va uning prototipi o'rtasidagi Evklid masofasini hisoblab chiqadi. Agar bizda ikkita sinf mavjud bo'lsa, A sinfi va B sinfi, toifaga kiritiladigan yangi kirish B sinf prototiplariga qaraganda A sinf prototiplariga ko'proq o'xshaydi.
Natijada, u A sinfi sifatida etiketlanishi yoki tasniflanishi mumkin.
|
| |