Malakaviy bitiruv ishida quyidagi xulosa olindi:
Tirqish kengligi davriy ravishda
funksiya bilan o’zgarganda quyidagi natijalar olindi:
-
Tirqish funksiyasining amplitudasi va chastotasi ortishi bilan sistemadagi zarrachalar yashash vaqtlari kamayib borar ekan.
-
Tirqish doimiy bo’lganiga nisbata o’zgaruvchan bo’lganida zarrachalarning yashash vaqtlari ortadi.
Оlingan natijalardan ko’rinadiki, dеmak nurni prоfili aylana ko’rinishdagi nurtоlaga nisbatan kеsilgan aylana ko’rinishdagi nurtоlada uzоq masоfaga uzatish mumkin. Bundan tashqari, olingan natijalar ushbu geometiryaga ega xaqiqiy fizik muhitlardagi ( optik nurtolalar, optik rezonatorlar, fazaviy bir jinsli bo’lmagan muhitlarda sochilish va boshqalar) jarayonlarni baholashda muvofaqqiyatli qo’llanilishi mumkin.
ILOVA
program cut_circle_bill_tirqishli
REAL*8 x1,x2,y1,y2,h,w0,vyi,x01,x10,y10,number,nnd(10000000)
common/param/x1,x2,y1,y2,h,w0,vyi,x01,x10,y10
INTEGER i,t,jj
real*8 x,y,x0,y0, b(4),beta0,beta,pi,n,gamma,alpha,psi,rr,ni
common/param/ x,y,x0,y0, b,beta0,beta,pi,n,gamma,alpha,psi,rr,ni
real*8 delta,delsent,psii,psiii,df,Ns,w,a
common/param/ delta,delsent,psii,psiii,df,w,a
open(1,file='Number_w=0.25.txt',status='unknown')
open(2,file='time_w=0.25.txt',status='unknown')
open(3,file='Np_Ns.txt',status='unknown')
pi=4.d0*datan(1.d0)
Nt=1000000
nd=1000000000
b(1)=1.0d0 ! aylana radiusi
w0=0.05d0 ! nurtolaning vertikal kengligi kesilish
number=10000 ! sistemadagi zarrachalar soni
w=15.d0 ! tirqishning o'zgarish funksiyasi chastotasi
a=10.0d0 ! tirqishning o'zgarish funksiyasi yarim
dd=0.0d0 ! tirqishning o'zgarish funksiyasi erkin
n=10000.d0 !devor bilan to'qnashuvlar soni
delsent=90.0d0 !tirqish markazining burchak koordinatasi ! psii=(delsent delta)*pi/180
r=0
rr=0
do t=1,nd
! random drop to a cell
x01=rand(0)*1.e 10
x10=mod(x01 t*1.0,1.0)
y10=mod(x01 t*1.0,1.2)
beta0=int(mod(1 t*1.0,358.0))
if(sqrt(x10**2 y10**2).gt.b(1)) goto 4
if(y10.lt.b(1)*(1-w0)) goto 4
r=r 1
if(r.gt.number) goto 5
write(*,*) r
x0=x10 ! boshlangich x0 nuqta
y0=y10 ! boshlangich y0 nuqta
beta=beta0*pi/180
h=2*b(1)-w0*b(1) ! nurtolaning vertikal qirqilgan qismi
b(2)=tan(beta) ! y=kx b dagi k
b(3)=y0-x0*b(2) ! y=kx b dagi b
call kvdr(x1,x2,y1,y2,b)
if(beta0.eq.90.)then
x0=x0
y0=(b(1)**2-x0**2)**0.5
goto 1
endif
if(beta0.eq.270.)then
x0=x0
y0=-(b(1)**2-x0**2)**0.5
goto 1
endif
if(beta0.gt.0.and.beta0.lt.180.)then
y0=max(y1,y2)
x0=(y0-b(3))/b(2)
endif
if(beta0.gt.180.and.beta0.lt.360.)then
y0=min(y1,y2)
x0=(y0-b(3))/b(2)
endif
if(beta0.eq.0.or.beta0.eq.360.)then
y0=y0
x0=(b(1)**2-y0**2)**0.5
endif
if(beta0.eq.180.)then
y0=y0
x0=-(b(1)**2-y0**2)**0.5
endif
ni=0
1 do i=1,Nt
delta=dd a*dsin(w*i)
psii=(delsent delta)*pi/180
psiii=(delsent-delta)*pi/180
if(y0.le.b(1)*(1-w0))then
ni=ni 1
call cut(x0,y0,b,beta,w0)
call kvdr(x1,x2,y1,y2,b)
if(abs(b(2)).gt.1.e 10)then
x0=x0
y0=(b(1)**2-x0**2)**0.5
goto 2
endif
y0=max(y1,y2)
x0=(y0-b(3))/b(2)
endif
2 call imu(x0,y0,b,gamma,beta)
ni=ni 1
alpha=atan(y0/x0)
if(x0.gt.0.and.y0.gt.0)then
psi=alpha
end if
if(x0.lt.0.and.y0.gt.0)then
psi=pi-abs(alpha)
end if
if(x0.lt.0.and.y0.lt.0)then
psi=abs(alpha) pi
end if
if(x0.gt.0.and.y0.lt.0)then
psi=2*pi-abs(alpha)
end if
if(psi.gt.psiii.and.psi.lt.psii) then
nnd(r)=ni
goto 4
endif
call kvdr(x1,x2,y1,y2,b)
if(abs(b(2)).gt.1.e 10)then
x0=x1
y0=-y0
goto 3
endif
if(abs(y1-y0).ge.abs(y2-y0))then
y0=y1
x0=x1
else
y0=y2
x0=x2
endif
3 enddo
4 kkk=max(rr,ni)
rr=kkk
enddo
nub=0
qol=number
5 do jj=1,rr
ss=0
do ii=1,number
if(nnd(ii).eq.jj)then
ss=ss 1
endif
enddo
if(ss.ne.0.)then
nub=nub ss
write(1,*)number-nub
write(2,*)jj
endif
if(nub.eq.number)stop
enddo
close(1)
close(2)
close(3)
end
! kavadrat tenglamaishlanish pod pragrammasi
subroutine kvdr(x1,x2,y1,y2,b)
implicit real*8(a-h,o-z)
real*8 x1,x2,y1,y2,b(4)
x1=(-b(3)*b(2) sqrt((b(1)**2)*(1 b(2)**2)-b(3)**2))/(1 b(2)**2)
x2=(-b(3)*b(2)-sqrt((b(1)**2)*(1 b(2)**2)-b(3)**2))/(1 b(2)**2)
y1=b(3) b(2)*x1
y2=b(3) b(2)*x2
end
! devor bilan tuqnashuvda burchak uzgarishi pod programmasi
subroutine imu(x0,y0,b,gamma,beta)
implicit real*8(a-h,o-z)
real*8 x0,y0,b(4),gamma,beta
if(y0.ge.0.)then
gamma=atan(-x0/(b(1)**2-x0**2)**0.5)
else
gamma=atan(x0/(b(1)**2-x0**2)**0.5)
endif
beta=2*gamma-beta
b(2)=tan(beta)
b(3)=y0-b(2)*x0
end
! aylananing kesilgan qijoyidagi burchak uzgarishi pod programmasi
subroutine cut(x0,y0,b,beta,w0)
implicit real*8(a-h,o-z)
real*8 x0,y0,b(4),w0
y0=b(1)*(1-w0)
x0=(y0-b(3))/b(2)
b(2)=-b(2)
b(3)=y0-x0*b(2)
beta=-beta
end
ADABIYOTLAR
-
А.Ю.Лоскутов, Динамический хаос. Системы классической механики. УФН. Том 177, №9, 989 (2007).
-
Н.В. Евдокимов, В.П. Комолов, П.В. Комолов, Интерференция динамического хаоса гамильтоновых систем: Эксперимент и возможности радиофизических приложений. УФН. Том 117, №7, 775 (2001).
-
В.С. Анищенко, Т.Е Вадивасова, Г.А. Окрокверцхов, Г.И. Стрелкова, Статистические свойства динамического хаоса. УФН. Том 175, №2, 163 (2005).
-
Мудров А.Е. Численнйе методы для ПЭВМ на языках бейсик, фортран и паскал.Томск. МП”Раско” 1991.
-
Kuznesov. S. P. Dinamichiskiy xaos. M: Fizmatlit. 2001. 296c.
-
Kuznesov. A. P, Kuznesov. S. P, Riskin. N. M. Nilineyie kalibaniya. M: Fizmatlit. 2002. 292c.
-
Berje. P, Pomo. I, Vidal. K. Poryadok v xaose. O determinisnicheskom podxode k turbulentnosti. M: Mir. 1991. 368c.
-
Mun. F. Xaoticheskie kolekolebaniya. M: Mir, 1990. 312c.
-
M V Berry. Regularity and chaos in classical mechanics, illustrated by three deformations of а circular billiard. European Journal of Physics,2:91 (1982).
-
F.Lenz. Time-dependent Classical Billiards. Diploma Thesis in Physics. University of Heidelberg. 2006.
-
W H Press, S A Teukolsky, W T Vetterling, and B P Flannery. Numerical Recipes in C, theArt of Scientific Computing. Cambridge University Press, 2nd edition edition, 2002.
-
V. Doya, O. Legrand, F. Mortessagne, and Ch. Miniatura, “Light scarring in an optical fiber”, Phys.Rev. Lett. 88, 014102 (2002).
-
Suhan Ree. “Fractal analysis on a closed classical hard-wall billiard using a simplified box-counting algorithm” February 4, 2008.
-
S. Ree, arXiv:nlin.CD/0206003 (will appear in J. KoreanPhys. Soc.) (2002).
|