• Performance Tuning for Virtualization Servers
  • Terminology
  • Hyper-V Architecture
  • Performance Tuning Guidelines for Windows Server 2008 R2 October 15, 2010




    Download 0.66 Mb.
    bet14/19
    Sana26.12.2019
    Hajmi0.66 Mb.
    #5293
    1   ...   11   12   13   14   15   16   17   18   19

    Monitoring and Data Collection


    The following list of performance counters is considered a base set of counters when you monitor the resource usage on the RD Gateway:

    \Terminal Service Gateway\*


    \RPC/HTTP Proxy\*
    \RPC/HTTP Proxy Per Server\*
    \Web Service\*
    \W3SVC_W3WP\*
    \IPv4\*
    \Memory\*
    \Network Interface(*)\*
    \Process(*)\*
    \Processor Information(*)\*
    \Synchronization(*)\*
    \System\*
    \TCPv4\*

    Note: If applicable, add the “\IPv6\*” and “\TCPv6\*” objects.

    Performance Tuning for Virtualization Servers


    Hyper-V™ is the virtualization server role in Windows Server 2008 R2. Virtualization servers can host multiple virtual machines (VMs) that are isolated from each other but share the underlying hardware resources by virtualizing the processors, memory, and I/O devices. By consolidating servers onto a single machine, virtualization can improve resource usage and energy efficiency and reduce the operational and maintenance costs of servers. In addition, VMs and the management APIs offer more flexibility for managing resources, balancing load, and provisioning systems.

    The following sections define the virtualization terminology that is used in this guide and suggest best practices that yield increased performance on Hyper-V servers.


    Terminology


    This section summarizes key terminology specific to VM technology that is used throughout this performance tuning guide:

    child partition

    Any partition (VM) that is created by the root partition.



    device virtualization

    A mechanism that lets a hardware resource be abstracted and shared among multiple consumers.



    emulated device

    A virtualized device that mimics an actual physical hardware device so that guests can use the typical drivers for that hardware device.



    enlightenment

    An optimization to a guest operating system to make it aware of VM environments and tune its behavior for VMs.



    guest

    Software that is running in a partition. It can be a full-featured operating system or a small, special-purpose kernel. The hypervisor is “guest-agnostic.”



    hypervisor

    A layer of software that sits just above the hardware and below one or more operating systems. Its primary job is to provide isolated execution environments called partitions. Each partition has its own set of hardware resources (CPU, memory, and devices). The hypervisor is responsible for controls and arbitrates access to the underlying hardware.



    logical processor (LP)

    A processing unit that handles one thread of execution (instruction stream). There can be one or more logical processors per core and one or more cores per processor socket.



    passthrough disk access

    A representation of an entire physical disk as a virtual disk within the guest. The data and commands are “passed through” to the physical disk (through the root partition’s native storage stack) with no intervening processing by the virtual stack.



    root partition

    A partition that is created first and owns all the resources that the hypervisor does not, including most devices and system memory. It hosts the virtualization stack and creates and manages the child partitions.



    synthetic device

    A virtualized device with no physical hardware analog so that guests might need a driver (virtualization service client) to that synthetic device. The driver can use VMBus to communicate with the virtualized device software in the root partition.



    virtual machine (VM)

    A virtual computer that was created by software emulation and has the same characteristics as a real computer.



    virtual processor (VP)

    A virtual abstraction of a processor that is scheduled to run on a logical processor. A VM can have one or more virtual processors.



    virtualization service client (VSC)

    A software module that a guest loads to consume a resource or service. For I/O devices, the virtualization service client can be a device driver that the operating system kernel loads.



    virtualization service provider (VSP)

    A provider exposed by the virtualization stack in the root partition that provides resources or services such as I/O to a child partition.



    virtualization stack

    A collection of software components in the root partition that work together to support VMs. The virtualization stack works with and sits above the hypervisor. It also provides management capabilities.


    Hyper-V Architecture


    Hyper-V features a hypervisor-based architecture that is shown in Figure 7. The hypervisor virtualizes processors and memory and provides mechanisms for the virtualization stack in the root partition to manage child partitions (VMs) and expose services such as I/O devices to the VMs. The root partition owns and has direct access to the physical I/O devices. The virtualization stack in the root partition provides a memory manager for VMs, management APIs, and virtualized I/O devices. It also implements emulated devices such as Integrated Device Electronics (IDE) and PS/2 but supports synthetic devices for increased performance and reduced overhead.



    Figure 7. Hyper-V Hypervisor-Based Architecture

    The synthetic I/O architecture consists of VSPs in the root partition and VSCs in the child partition. Each service is exposed as a device over VMBus, which acts as an I/O bus and enables high-performance communication between VMs that use mechanisms such as shared memory. Plug and Play enumerates these devices, including VMBus, and loads the appropriate device drivers (VSCs). Services other than I/O are also exposed through this architecture.

    Windows Server 2008 and Windows Server 2008 R2 feature enlightenments to the operating system to optimize its behavior when it is running in VMs. The benefits include reducing the cost of memory virtualization, improving multiprocessor scalability, and decreasing the background CPU usage of the guest operating system.



    Download 0.66 Mb.
    1   ...   11   12   13   14   15   16   17   18   19




    Download 0.66 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Performance Tuning Guidelines for Windows Server 2008 R2 October 15, 2010

    Download 0.66 Mb.