|
Graflat nazaryasining asosiy tushunchalari
|
bet | 2/4 | Sana | 22.05.2024 | Hajmi | 25,55 Kb. | | #250452 | Turi | Referat |
Bog'liq Referati mavzu Graf erkin uchlarini ajratish masalasi. Bajardi 2.Graflat nazaryasining asosiy tushunchalari.
Graflar nazariyasi bo'yicha tadqiqotlar natijalari inson faoliyatining turli sohalarida qo'llaniladi. Ulardan ba'zilari quyidagilardir: boshqotirmalarni hal qilish; qiziqarli o'yinlar; yo'llar, elektr zanjirlari, integral sxemalari va boshqarish sistemalarini loyihalashtirish; avtomatlar, blok-sxemalar va komp'yuter uchun programmalarni tadqiq qilish va hokazo.
Grafning abstrakt ta'rifi va u bilan bog'liq boshlang'ich tushunchalar. Avvalo, grafning abstrakt matematik tushuncha sifatidagi ta'rifini va boshqa ba'zi sodda tushunchalarni keltiramiz. qandaydir bo'shmas to'plam bo'lsin. Uning va elementlaridan tuzilgan ko'rinishdagi barcha juftliklar (kortejlar) to'plamini ( to'plamning o'z-o'ziga Dekart ko'paytmasini) bilan belgilaymiz.
Graf deb shunday juftlikka aytiladiki, bu yerda va - ( , ) ko'rinishdagi juftliklar korteji bo'lib, to'plamning elementlaridan tuzilgandir.
Bundan buyon grafni belgilashda yozuv o'rniga yozuvdan foydalanamiz. Grafning tashkil etuvchilarini ko'rsatish muhim bo'lmasa, u holda uni lotin alifbosining bitta harfi, masalan, bilan belgilaymiz.
graf berilgan bo'lsin. to'plamning elementlariga grafning uchlari, to'plamning o'ziga esa, graf uchlari to'plami deyiladi.
Graflar nazariyasida "uch" iborasi o'rniga, ba'zan, tugun yoki nuqta iborasi ham qo'llaniladi. Umuman olganda, hanuzgacha graflar nazariyasining ba'zi iboralari bo'yicha umumiy kelishuv qaror topmagan. Shuning uchun, bundan keyingi ta'riflarda, imkoniyat boricha, muqobil (alternativ) iboralarni ham keltirishga harakat qilamiz.
grafning ta'rifiga ko'ra, bo'sh kortej bo'lishi ham mumkin. Agar bo'sh bo'lmasa, u holda bu kortej ( , ) ko'rinishdagi juftliklardan tashkil topadi, bunda bo'lishi hamda ixtiyoriy juftlik kortejda istalgancha marta qatnashishi mumkin.
juftlikni tashkil etuvchi va uchlarning joylashish tartibidan bog'liq holda, ya'ni yo'nalishning borligi yoki yo'qligiga qarab, uni turlicha atash mumkin. Agar juftlik uchun uni tashkil etuvchilarning joylashish tartibi ahamiyatsiz, ya'ni bo'lsa, juftlikka yo'naltirilmagan (oriyentirlanmagan) qirra (yoki, qisqacha, qirra) deyiladi. Agar bu tartib muhim, ya'ni bo'lsa, u holda juftlikka yoy yoki yo'naltirilgan (oriyentirlangan) qirra deyiladi.
kortejning tarkibiga qarab, uni yo grafning qirralari korteji, yo yoylari korteji, yoki qirralari va yoylari korteji deb ataymiz.
Grafning uchlari va qirralari (yoylari) uning elementlari deb ataladi. graf elementlarining soni ( )ga tengdir, bu yerda grafning uchlari soni va bilan uning qirralari (yoylari) soni belgilangan.
Grafning qirrasi (yoyi), odatda, uni tashkil etuvchi uchlar yordamida , yoki , yoki ko'rinishda belgilanadi. Boshqa belgilashlar ham ishlatiladi: masalan, yoy uchun yoki , qirra uchun , yoy yoki qirra uchun (ya'ni uchlari ko'rsatilmasdan bitta harf vositasida) ko'rinishda.
Graf yoyi uchun uning chetki uchlarini ko'rsatish tartibi muhim ekigini ta'kidlaymiz, ya'ni va yozuvlar bir-biridan farq qiluvchi yoylarni ifodalaydi. Agar yoy ko'rinishda ifodalangan bo'lsa, u holda uning boshlang'ich uchi, esa oxirgi uchi deb ataladi. Bundan tashqari, yoy ko'rinishda yozilsa, u haqida uchdan chiquvchi (boshlanuvchi) va uchga kiruvchi (uchda tugovchi) yoy deb aytish ham odat tusiga kirgan.
Qirra uchun uning yozuvidagi harflar joylashish tartibi muhim rol o'ynamaydi va va elementlar qirraning uchlari yoki chetlari deb ataladi.
Agar grafda yo qirra, yo yoy, yoki yoy topillsa, u holda va uchlar tutashtirilgan deyiladi. Agar grafning ikkita uchini tutashtiruvchi qirra yoki yoy bor bo'lsa, u holda ular qo'shni uchlar deb, aks holda esa, qo'shni bo'lmagan uchlar deb aytiladi.
Grafning ikkita uchi qo'shni bo'lsa, ular shu uchlarni tutashtiruvchi qirraga (yoyga) insident, o'z navbatida, qirra yoki yoy bu uchlarga insident deyiladi.
Grafda ikkita qirra (yoy) umumiy chetga ega bo'lsa, ular qo'shni qirralar (yoylar) deyiladi.
|
| |