Grammar structures for smart homes dialogues




Download 0,56 Mb.
Pdf ko'rish
bet9/14
Sana15.05.2024
Hajmi0,56 Mb.
#235098
1   ...   6   7   8   9   10   11   12   13   14
6. Grammar structures for smart homes dialogues 
As seen in section 4, VI for smart homes involves different levels of complexity ranging from 
an isolated word recognizer to an unconstrained ASR dictation system. For isolated word 
recognition, a speech recognizer attempts to detect commands by focusing on keywords in 
segmented natural sentences from the talker. A more complicated system, often referred to as 
a system driven dialogue (Nakano et al., 2006), can allow a user to complete information fields. 
Large vocabulary continuous speech recognition (LVCSR), by contrast, requires language 
models or grammars to select the most likely word sequence from the relatively large 
number of alternative word hypotheses produced during the search process at each stage in 
a conversation. Simple recognition tasks can use rule-based regular or context free 
grammars, where the system only recognizes a limited vocabulary. 
In a speech-based smart home system, a VI session begins with a configurable spoken 
identifier phrase to 'attract the attention' of the ASR computer. From this point on, the 
adoption of grammar and syntactic structures, although these must be learnt by the user 
and thus reduce user friendliness, are crucial in maintaining the recognition accuracy of 
such systems. 
Following attention, a tree of vocabulary options is possible. The aim at each stage of is to 
maximise recognition accuracy for given SNR, by reducing the vocabulary search space. An 
example sentence for one speaker might be: 
ACTION – argument – (optional MODIFIER- (optional argument)) – PAUSE/REPEAT 
In general, each of the action, argument and modifier sub phrases will have differing 
vocabulary characteristics, but it is a common feature of such systems that vocabulary size 
be minimised through syntactic structure. Let us proposed that each sub-phrase is classified 
by the following arguments: 

Vocabulary consisting of V elements 

Accuracy requirement, R 

Length constraint, L 

Interruptibility type, T 
The characteristics of each sub-phrase are known in advance, having been defined by the 
grammar syntax, with recall prompted by traversal to the current branch. The length 
constraint is used to help detect end-of-phrase overrun conditions, and perhaps a missed 
MODIFIER phrase.
One or more phrases by each party in the communication comprise a conversation (or 
dialogue). An overall conversation, and indeed a phrase made of sub phrases has its own 
accuracy requirement. However this level of end-to-end link assurance is unwieldy for 
anything but confirming that an important action should or should not occur as the result of 
a conversation. 
Sub-phrase vocabulary may occasionally need to be unconstrained (such as when 
performing a web search or dictating an email), but at other times could be limited (in this 
mode, we can use keywords or embedded phrases in natural sentences to command the 


Speech Recognition for Smart Homes 
487 
system). Potentially these two classes of recognition task could be performed with two 
different types of ASR software employing isolated word and continuous speech 
recognition respectively (Nakano et al., 2006). However both are catered for in Sphinx2 
using two density acoustic models, namely semi-continuous and continuous. Some other 
flexible speech recognition systems have been introduced.
One system by Furui (Furui, 2001) uses a method of automatically summarizing speech
sentence by sentence. This is quite domain-specific (closed-domain) with limited vocabulary 
size (designed for news transcription), and may not be directly applicable to a continuously 
variable vocabulary size smart home system. However it does perform very well, and 
provides an indication of the customisations available in such systems. 
Vocabulary size, 
V
, impacts recognition accuracy, and needs to be related to accuracy 
requirement, 
R
. Since 100% accuracy is unlikely, smart home systems need to be able to cope 
with inaccuracies through careful design of the interaction and confirmation processes. In 
Download 0,56 Mb.
1   ...   6   7   8   9   10   11   12   13   14




Download 0,56 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Grammar structures for smart homes dialogues

Download 0,56 Mb.
Pdf ko'rish