|
Natija. Istalgan chekli sondagi cheksiz kichiklarning algebraik yig’indisi yana cheksiz kichik ketma-ketlikdir.
3-teorema
|
bet | 76/94 | Sana | 22.07.2021 | Hajmi | 4,78 Mb. | | #15496 |
Natija. Istalgan chekli sondagi cheksiz kichiklarning algebraik yig’indisi yana cheksiz kichik ketma-ketlikdir.
3-teorema. Ikkita cheksiz kichik ketma-ketlikning ko’paytmasi, cheksiz kichik ketma-ketlik bo’ladi.
Isbot. va lar cheksiz kichik ketma-ketliklar bo’lsin. ketma-ketlikning cheksiz kichikligini isbotlash talab etiladi. cheksiz kichik bo’lganligi uchun, istalgan son uchun shunday raqam topiladiki, lar uchun cheksiz kichik ketma-ketlik bo’lganligi uchun uchun shunday topiladiki lar uchun bajariladi. deb olsak, lar uchun ikkala tengsizlik ham bajarilib,
bo’ladi. Bu ketma-ketlikning cheksiz kichikligini bildiradi.
Natija. Istalgan sondagi cheksiz kichiklarning ko’paytmasi yana cheksiz kichik bo’ladi.
Eslatma. Ikkita cheksiz kichiklarning nisbati cheksiz kichik bo’lmasligi mumkin, masalan, cheksiz kichiklarning nisbati hamma elementlari 1 lardan iborat chegaralanlan ketma-ketlikdir. cheksiz kichik ketma-ketliklarning nisbati bo’lib, cheksiz katta ketma-ketlik hosil bo’ladi. bo’lsa, ularning nisbati cheksiz kichik bo’ladi.
4-teorema. Chegaralangan ketma-ketlikning cheksiz kichik ketma-ketlikka ko’paytmasi cheksiz kichik ketma-ketlik bo’ladi. (Bu teoremaning isbotini o’quvchiga havola qilamiz).
|
|
Bosh sahifa
Aloqalar
Bosh sahifa
Natija. Istalgan chekli sondagi cheksiz kichiklarning algebraik yig’indisi yana cheksiz kichik ketma-ketlikdir.
3-teorema
|