|
Tabiiy fanlar
| bet | 75/94 | Sana | 22.07.2021 | Hajmi | 4,78 Mb. | | #15496 |
1-teorema. cheksiz katta ketma-ketlik va uning hamma elementlari 0 dan farqli bo’lsa, ketma-ketlik cheksiz kichik ketma-ketlik va aksincha cheksiz kichik ketma-ketlik va bo’lsa, ketma-ketlik cheksiz katta ketma-ketlik bo’ladi.
Isbot. cheksiz katta ketma-ketlik bo’lsin. Istalgan son olib, deylik. 1-ta’rifdan shu A son uchun shunday raqam mavjudki, lar uchun bo’ladi. Bundan hamma uchun kelib chiqadi. Bu ketma-ketlikning cheksiz kichikligini bildiradi. (Teoremaning ikkinchi qismini isbot qilishni o’quvchiga havola etamiz).
Cheksiz kichik ketma-ketliklar quyidagi xossalarga ega.
2-teorema. Ikkita cheksiz kichik ketma-ketliklarning algebraik yig’indisi yana cheksiz kichik ketma-ketlik bo’ladi.
Isbot. va cheksiz kichik ketma-ketliklar bo’lsin. Bu cheksiz kichik ketmk-ketliklar uchun, istalgan son uchun raqam topiladiki, lar uchun, tengsizlik, raqam topiladiki, lar uchun tengsizliklar bajariladi. desak, lar uchun birdaniga , tengsizliklar bajariladi. Shunday qilib,
bњladi.
Bu ketma-ketlikning cheksiz kichik ekanligini bildiradi.
|
| |