Texnologik jarayonlarni modellashtirish va optimallashtirish asoslari




Download 251.22 Kb.
bet2/2
Sana02.01.2023
Hajmi251.22 Kb.
#37413
1   2
Bog'liq
Texnologik jarayonlarni modellashtirish va optimallashtirish aso
kompyuter Tarmoqnini montaj qilsh turlar, Great Uzbek writers, Zakawat tazaaaa, Презентация 2, 6-amaliy mashg`ulot, 14-amaliy mashg`ulot, HAKIMOV NABIJON MATEM, 1 kichik ges, N. M. Kayumova-www.hozir.org, Mavzu Zamonaviy kiyim assortimenti, Mavzu Kiyim o‘lchamlari konstruksiyasining xususiyatlari, Mavzu Kiyim shaklini hosil qilish vositalari, Mavzu Yetakchi razmer o`lchovlari, MOLIYA TIZIMI NAMUNA

Boshlang‘ich ma’lumotlar







Si0, kmol/m3

T1, K

T2, K

(T1 da) KT1i, 1/s

(T2 da) KT2i, 1/s

5

1,5

0

0

0




380

350

0,7

0,6

0,7

1,6

-

KT2i = 2KT1i

x=1000 kg/m3; Srx(u)=1400 J/(kg K); v=0,5 m3/min



Sr(u), Dj/(kg K)

sm , kg/m
3

KT,
Vt/(m2K)

Issiqlik samarasi, -H, J/mol

F,
m2

V, m3

T0, K

Tx0, K

-H1

-H2

-H3

-H4

-H5













2000

1500

200

12 000

10 000

10 000

20 000




7

1.1

300

275

Kimyoviy aylanish sxemasi 13, 21, 32, 34 Boshlang‘ich ma’lumotlarni bir о‘lchash tizimiga о‘tkazish: 0,5 m3/min = 8,333∙10-3 m3/s; S10=1500 mol/m3 3.Koeffitsiyentlarni hisoblash
(10) va (11) tenglamalar asosida quyidagi kо‘rsatkichlarni aniqlaymiz:












  1. Kimyoviy kinetikaning differensial tenglamalar tizimi.


Elementar reaksiyalar tezligining ifodalari uchun quyidagicha kо‘rinishda yozish mumkin:






Differensial tenglamalar tizimi kuyidagi kо‘rinishni oladi:





Kimyoviy reaksiya tezligi haroratga bog‘liq bо‘lib, u reaksiya tezligi konstantasi ifodasida aks etadi:





Tezlik konstantasi va dastlabki ma’lumotlarning ifodasini hisobga olgan holda, differensial tenglamalar tizimi quyidagi kо‘rinishga keltirish mumkin:




  1. Kimyoviy kinetikani modellashtirish: doimiy va о‘zgaruvchan haroratlarda

bog’liqlik grafigi.





3
Cj , моль/ м

Harorat quyidafi qonun asosida o’zgaradi:





3
Cj , моль/ м


  1. rasm. О‘zgaruvchan haroratda Sj=f(t) bog‘liqlik grafigi.


  1. Reaktorni tavsiflovchi differensial tenglamalar tizimi:

















  1. Kimyoviy reaktorni modellashtirish: Cj=f(t) va T=f(t) bog’liqlik grafiklari.

Cj=f(t) va T=f(t) bog’liqlik grafiklari.

O’zgarmas qiymatlar:

C1=252.5062 [mol/m3]

C2=144.2706 [mol/m3]

C3=266.2115 [mol/m3]

C4=837.0118 [mol/m3]

T= 318.0719 [mol/m3]


  1. Reaktordagi harorat kanali bo’yicha o’tish xarakteristikasi- sovitish agenti sarfi

Sovitish agenti sarfiga 5% li turki beramiz, ya’ni

t,c

O’tish egri chizig’i

  1. O’tish xarakteristikani qayta ishlash natijalari

Obyektning uzatish funksiyasi:

Kengaytirilgan chastota xarakteristikalar usuli yordamida hisoblangan rostlagich sozlash qiymatlari:

Kp=7.67

Tu=104.54


  1. Boshqarish tizimini modellashtirish

Kimyoviy reaktor ART matematik tavsifi.

Rostlagichning olingan sozlash qiymatlaridan foydalanib, quyidagi differensial tenglamalar tizimini yechamiz:

Qobiqdagi sovitish agentining Tx haroratini quyidagi tenglamadan olamiz:





Sovitish agentining xajmiy sarfi ifodasi:


  1. Topshiriq va g‘alayonlanish kanallari bо‘yicha о‘tish jarayonlarining grafiklari.




T , K


  1. rasm. Ichki g‘alayonlanish qanali bо‘yicha о‘tish jarayoni grafigi (10 %).



  1. Kurs ishi bо‘yicha hulosalar


Kurs ishi bajarish davomida kimyoviy reaktorda yuz beradigan jarayonlarni matematik modellashtirish bо‘yicha amaliy kо‘nikmalar hosil qildim. Kimyoviy reaktorni modellashtirish asosida boshqarish tizimining modeli ishlab chiqdim. Buning uchun PI rostlagichning sozlash qiymatlarini aniqladim.


ILOVA.
Kiritilayotgan barcha dasturlar Matlab amaliy dasturiy paketining M-fayl bo’limida kiritilgan va ishga tushurilgan:


Doimiy va о‘zgaruvchan haroratlarda bog’liqlik grafigining dasturi:
function listing1
[t,c]=ode45(@fck,[0 30],[1500 0 0 0]);
plot(t,c,'LineWidth',2);
h=legend('c(1)','c(2)','c(3)','c(4)',40);
set(h,'Interpreter','none');
grid;
function dc = fck(~,c)
K1=9.6207e+010;
K2=6.8719e+010;
K3=9.6207e+010;
K4=2.0616e+011;
E_R=9232.7;
T1=360;
dc=zeros(4,1);
dc(1)=K1*exp(-E_R/T1)*c(2)-K4*exp(-E_R/T1)*c(1);
dc(2)=K2*exp(-E_R/T1)*c(3)-K1*exp(-E_R/T1)*c(2);
dc(3)=K4*exp(-E_R/T1)*c(1)-K3*exp(-E_R/T1)*c(3)-K2*exp(-E_R/T1)*c(3);
dc(4)=K3*exp(-E_R/T1)*c(3);


О‘zgaruvchan haroratda Sj=f(t) bog‘liqlik grafigi dasturi:
Listing2
function listing2
[t,c]=ode45(@fck,[0 1500],[1500 0 0 0]);
plot(t,c,'LineWidth',2);
h=legend('c(1)','c(2)','c(3)','c(4)',40);
set(h,'Interpreter','none');
grid;
function dc = fck(t,c)
K1=9.6207e+010;
K2=6.8719e+010;
K3=9.6207e+010;
K4=2.0616e+011;
E_R=9232.7;
w=25;
T1=300+w*sin(2*pi*t/10);
dc=zeros(4,1);
dc(1)=K1*exp(-E_R/T1)*c(2)-K4*exp(-E_R/T1)*c(1);
dc(2)=K2*exp(-E_R/T1)*c(3)-K1*exp(-E_R/T1)*c(2);
dc(3)=K4*exp(-E_R/T1)*c(1)-K3*exp(-E_R/T1)*c(3)-K2*exp(-E_R/T1)*c(3);
dc(4)=K3*exp(-E_R/T1)*c(3);
Kimyoviy reaktorni modellashtirish: Cj=f(t) va T=f(t) bog’liqlik grafiklari dasturi:
Listing3
function listing3
[T,C]=ode15s(@gif,[0 1000],[1500 0 0 0 300]);
plot(T,C,'LineWidth',2);
h=legend('c(1)','c(2)','c(3)','c(4)','T');
set(h,'Interpreter','none');
grid on
function dc=gif(~,c)
Er=9232.7;
K1=9.6207e+010;
K2=6.8719e+010;
K3=9.6207e+010;
K4=2.0616e+011;
v=0.5/60;
V=1.1;
Cpcm=2000*1300;
H1=12000;
H2=10000;
H3=10000;
H4=20000;
Kt=200;
F=7;
Cpx=1400*1000;
vx=v;
Txo=275;
dc=zeros(5,1);
dc(1)=(v/V)*(1500-c(1))+K1*c(2)*exp(-Er/c(5))-K4*c(1)*exp(-Er/c(5));
dc(2)=(v/V)*(0-c(2))+K2*c(3)*exp(-Er/c(5))-K1*c(2)*exp(-Er/c(5));
dc(3)=(v/V)*(0-c(3))+K4*c(1)*exp(-Er/c(5))-K3*c(3)*exp(-Er/c(5))-K2*c(3)*exp(-Er/c(5));
dc(4)=(v/V)*(0-c(4))+K3*c(3)*exp(-Er/c(5));
dc(5)=(v/V)*(300-c(5))+(1/Cpcm)*((H1)*K1*c(2)*exp(-Er/c(5))+(H2)*K2*exp(-Er/c(5))*c(3)+(H3)*K3*c(3)*exp(-Er/c(5))+(H4)*K4*exp(-Er/c(5))*c(1))+(Kt*F/(V*Cpcm))*((F*Kt*c(5)+2*Cpx*vx*Txo)/(F*Kt+2*Cpx*vx)-c(5));

O’tish egri chizig’i dasturi:


listing4
function listing4
clc
[T,C]=ode15s(@gif,[0 2000],[252.5062 144.2706 266.2115 837.0118 318.0719]);
plot(T,C(:,5))
grid on
function dc=gif(~,c)
Er=9232.7;
K1=9.6207e+010;
K2=6.8719e+010;
K3=9.6207e+010;
K4=2.0616e+011;
v=0.5/60;
V=1.1;
Cpcm=2000*1300;
H1=12000;
H2=10000;
H3=10000;
H4=20000;
Kt=200;
F=7;
Cpx=1400*1000;
vx=v*1.05;
Txo=275;
dc=zeros(5,1);
dc(1)=(v/V)*(1500-c(1))+K1*c(2)*exp(-Er/c(5))-K4*c(1)*exp(-Er/c(5));
dc(2)=(v/V)*(0-c(2))+K2*c(3)*exp(-Er/c(5))-K1*c(2)*exp(-Er/c(5));
dc(3)=(v/V)*(0-c(3))+K4*c(1)*exp(-Er/c(5))-K3*c(3)*exp(-Er/c(5))-K2*c(3)*exp(-Er/c(5));
dc(4)=(v/V)*(0-c(4))+K3*c(3)*exp(-Er/c(5));
dc(5)=(v/V)*(300-c(5))+(1/Cpcm)*((H1)*K1*c(2)*exp(-Er/c(5))+(H2)*K2*exp(-Er/c(5))*c(3)+(H3)*K3*c(3)*exp(-Er/c(5))+(H4)*K4*exp(-Er/c(5))*c(1))+(Kt*F/(V*Cpcm))*((F*Kt*c(5)+2*Cpx*vx*Txo)/(F*Kt+2*Cpx*vx)-c(5));














Topshiriq grafik dasturi:



listing5
function listing5
clc
[T,C]=ode15s(@gif,[0 2000],[252.5062 144.2706 266.2115 837.0118 318.0719 100]);
plot(T,C(:,5))
grid on
function dc=gif(~,c)
Er=9232.7;
K1=9.6207e+010;
K2=6.8719e+010;
K3=9.6207e+010;
K4=2.0616e+011;
v=0.5/60;
V=1.1;
Cpcm=2000*1300;
H1=12000;
H2=10000;
H3=10000;
H4=20000;
Kt=200;
F=7;
Cpx=1400*1000;
vx=v;
Txo=275;
Kp=7.63;
Tu=104.44;
Tz=320;
dc=zeros(5,1);
dc(1)=(v/V)*(1500-c(1))+K1*c(2)*exp(-Er/c(5))-K4*c(1)*exp(-Er/c(5));
dc(2)=(v/V)*(0-c(2))+K2*c(3)*exp(-Er/c(5))-K1*c(2)*exp(-Er/c(5));
dc(3)=(v/V)*(0-c(3))+K4*c(1)*exp(-Er/c(5))-K3*c(3)*exp(-Er/c(5))-K2*c(3)*exp(-Er/c(5));
dc(4)=(v/V)*(0-c(4))+K3*c(3)*exp(-Er/c(5));
dc(5)=(v/V)*(300-c(5))+(1/Cpcm)*((H1)*K1*c(2)*exp(-Er/c(5))+(H2)*K2*exp(-Er/c(5))*c(3)+(H3)*K3*c(3)*exp(-Er/c(5))+(H4)*K4*exp(-Er/c(5))*c(1))+(Kt*F/(V*Cpcm))*((F*Kt*c(5)+2*Cpx*(vx*c(6)/100)*Txo)/(F*Kt+2*Cpx*(vx*c(6)/100))-c(5));
dc(6)=-Kp*((v/V)*(300-c(5))+(1/Cpcm)*((H1)*K1*c(2)*exp(-Er/c(5))+(H2)*K2*exp(-Er/c(5))*c(3)+(H3)*K3*c(3)*exp(-Er/c(5))+(H4)*K4*exp(-Er/c(5))*c(1))+(Kt*F/(V*Cpcm))*((F*Kt*c(5)+2*Cpx*(vx*c(6)/100)*Txo)/(F*Kt+2*Cpx*(vx*c(6)/100))-c(5)))+(Kp/Tu)*(Tz-c(5));



FOYDALANILGAN ADABIYOTLAR


  1. Cameron, Ian.. Product and process modelling: a case study approach / Ian Cameron, Rafiqul Gani. Oxford : Elsevier, 2011. xii, 558 p.

  2. Yusupbekov N.R., Muxitdinov D.P. Texnologik jarayonlarni modellashtirish va optimallashtirish asoslari. Oliy o‘quv yurtlari uchun darslik. 2-chi nashr: qayta ishlangan va to‘ldirilgan. –T.: Fan va texnologiya, 2019.

  3. Yusupbekov N.R., Muxitdinov D.P. Texnologik jarayonlarni modellashtirish va identifikatsiyalash. Oliy o‘quv yurtlari uchun o‘quv qo‘llanma. –T.: Fan va texnologiya, 2019.

  4. Luigi Bocola Identifying Neutral Technology Shocks. University of Pennsylvania, 2014.

  5. Кафаров, В. В. Математическое моделирование основных процессов химических производств : учебное пособие для академического бакалавриата / В. В. Кафаров, М. Б. Глебов. — 2-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2018. — 403 с.

  6. Артиков А. Компьютерные методы анализа и синтеза химико- технологических систем. Учебник. Ташкент – 2012. 160 с.

  7. Гартман Т.Н., Клушин Д.В. Основы компьютерного моделирования химико-технологических процессов: Учеб. пособие для вузов. – М.:ИКЦ “Академкнига”, 2006. 416с.

  8. «Артиков А. Мухандистик технологиясида тахлил, компьютерли моделлештириш ва оптимал ечим топиш. Дарслик. Тошкент. “SPECTRUM SCOPE”. 216 б.

  9. Дворецкий С.И., Егоров А.Ф., Дворецкий Д.С. Компьютерное моделирование и оптимизация технологических процессов и оборудования: Учеб. пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2003. 224 с

10. www.ziyonet.uz


11. http://www.allbest.ru
12. www.knowledge.allbest.ru
13. www.twirpx.com
14. www.e-lib.kemtipp.ru
15. www.newlibrary.ru
16. www.priapp.ru
17. www.knigafund.ru
18. www.elibrary-book.ru





Download 251.22 Kb.
1   2




Download 251.22 Kb.

Bosh sahifa
Aloqalar

    Bosh sahifa



Texnologik jarayonlarni modellashtirish va optimallashtirish asoslari

Download 251.22 Kb.