• Cost of entry and returns
  • Finality Probabilistic Probabilistic Probabilistic Probabilistic Immediate Probabilistic Scalability in Network
  • Energy Efficiency
  • Susceptible to Sybil attack No Yes Yes No Yes No Examples
  • Transactions per second (TPS)
  • Block confirmation time (seconds)
  • A survey on Blockchain Technology and its




    Download 0,66 Mb.
    Pdf ko'rish
    bet7/28
    Sana18.12.2023
    Hajmi0,66 Mb.
    #122650
    1   2   3   4   5   6   7   8   9   10   ...   28
    Bog'liq
    Huaqun Xingjie - A Survey on blockchain Technology and its Security - 2022 March

    PoW 
    PoS 
    DPoS 
    PoET 
     
     PBFT 
    DAG 
    Setup 
    Public 
    permissionless / 
    Private 
    Blockchain 
    Public 
    permissionless / 
    Private 
    Blockchain 
    Public / Private 
    Blockchain 
    Private 
    permissioned 
    or 
    permissionless 
    Blockchain 
    Private 
    permissioned 
    Blockchain 
    Public 
    permissioned 
    non-Blockchain 
    Cost of entry 
    and returns 
    Relatively high 
    cost of entry, but 
    high returns 
    Low cost of entry, 
    but low returns 
    Lower cost and 
    lower returns than 
    PoS 
    Very low cost 
    of entry, but 
    low returns 
    All participate 
    with no return
    All participate 
    with no return 
    Incentives
    The winning 
    miner receives 
    new coins with 
    the block & 
    transaction fees in 
    the block he/she 
    validates. 
    The winner 
    receives 
    transaction fees 
    with the new 
    block. If a block 
    winner attempts 
    to add an invalid 
    block, he/she lose 
    his/her stake.
    The threat of loss 
    of reputation & 
    income provides 
    incentive for 
    delegates to act 
    honestly and keep 
    the network 
    secure. 
    The winning 
    miner receives 
    the transaction 
    fees with the 
    new block 
    he/she 
    validates.
    Nil 
    Nil 
    Finality 
    Probabilistic 
    Probabilistic 
    Probabilistic 
    Probabilistic
    Immediate
    Probabilistic 
    Scalability in 
    Network 
    High 
    Medium 
    Medium 
    Medium 
    Low 
    (Quickly grow 
    into a huge 
    communication 
    cost as the 
    amount of nodes 
    scales upwards) 
    High 
    Energy 
    Efficiency 
    Very low 
    (energy intensive 
    computations, 
    e.g., Bitcoin 
    consumes around 
    121.36 terawatt-
    hours (TWh) a 
    year) 
    High 
    High 
    (no miners 
    required) 
    High 
    Medium 
    (Some PBFT 
    systems use PoW 
    to prevent Sybil 
    attack, but only 
    after a set number 
    of blocks (i.e., 
    100) and not for 
    every block) 
    Medium 
    (A small PoW 
    operation when a 
    node submits a 
    transaction to 
    ensure network is 
    not being 
    spammed and also 
    validates previous 
    transactions.) 
    majority or 
    51% attack
    The number of 
    malicious nodes > 
    25% of all nodes 
    for attack
    Reduced 51% 
    attack probability
    Easier to organize 
    a 51% attack if 
    delegates 
    combine their 
    power 
    Reduced 51% 
    attack 
    probability 
    The number of 
    malicious nodes > 
    one third of all 
    nodes for attack
    Not tested at scale 
    Susceptible to 
    Sybil attack 
    No 
    Yes 
    Yes 
    No 
    Yes 
    No 
    Examples 
    Bitcoin, 
    Ethereum, 
    Litecoin, Monero, 
    Dash, Zcash, 
    Decred, and more. 
    Ethereum 2.0,
    Cardano, 
    Polkadot 
    BlackCoin, 
    Peercoin 
    EOS, BitShares, 
    Lisk, Steem, Ark, 
    Nano, Cardano, 
    and Tezos 
    Hyperledger 
    Sawtooth
    Hyperledger 
    Fabric, Zilliqa 
    IOTA 
    Transactions 
    per second 
    (TPS) 
    Bitcon: 7
    maximum 27
    Ethereum: 15 
    EOS: 3,996
    BitShares: 3,300
    Hyperledger 
    Sawtooth: 
    2,300
    Hyperledger 
    Fabric: 
    approximately 
    3,500
    IOTA: 250
    IOTA Pollen 
    V0.2.2: >1000
    Block 
    confirmation 
    time (seconds) 
    Bitcoin: 6,000
    Litecoin: 150 
    Ethereum: 15 
    seconds
    EOS: 0.5
    BitShares: 3 
    No actual time 
    is found 
    In seconds’ level 
    (No actual time is 
    found) 
    120 
    Zero-Knowledge Proofs. One of the primary use cases 
    for Zero-Knowledge Proofs in Blockchain is shown in the 
    following. When a user makes a request to send another user 
    some money, the Blockchain naturally wants to make sure, 
    before it commits this transaction, that the user who is sending 
    money has enough money to send. However, the Blockchain 
    Journal Pre-proof


    does not really need to know or care who is spending the 
    money, or how much total money he/she has. In this case, the 
    Blockchain has zero knowledge about who is the user to send 
    the money and how much money the user has. 
    Zero-knowledge proofs are a cryptographic principle used 
    in some Blockchains to increase the privacy of users. 
    Currently, Ethereum does not have support for zero-
    knowledge proofs, but adding the necessary functionality for 
    zkSNARKS, a type of zero-knowledge proofs, is currently 
    included in the Ethereum development roadmap. 
    Hash Functions. Hash functions are a key technology 
    used in the Blockchain. A hash function is a mathematical 
    equation with five important properties for cryptography: 
    Fixed Size. Hash functions can take anything as input 
    and create an output with a fixed size. This makes it 
    possible to condense anything into a piece of data of a 
    fixed size. So Blockchains use hash functions to 
    condense messages for digital signatures. 
    Preimage resistance. Given an input, it is not hard to 
    calculate a hash output. However given the hash 
    output, it is mathematically impossible to reverse-
    engineer the original input. In fact, the only possible 
    way is to randomly input the data into the hash function 
    until the same output is produced. 
    2
    nd
    Preimage Resistance. If an input and its hash 
    output are given, to get the second input that produces 
    the same hash output is computationally infeasible. 
    Collision Resistance. Finding any two distinct inputs 
    is computationally infeasible to produce the same hash 
    output. 
    Big Change. If any single bit of the input is changed, 
    it will produce the entirely different hash output.
    Fig. 3 shows that cryptographic hash function provides a 
    way to link all blocks on the Blockchain together. On the 
    block level, hash of previous Block i-2 header is stored in 
    Block i-1, hash of previous Block i-1 header is stored in Block 
    i, hash of previous Block i header is stored in Block i+1, and 
    so on.
    Fig. 3. Blockchain Connection Structure and Merkle Tree with Hash 
    Function. 
    Within a block, there are multiple transactions. Blockchain 
    also hashes every transaction and for a Merkle Tee at the 
    bottom part of Fig. 3 and Merkle Root is stored in the block 
    header. In this way, Blockchain creates a distributed ledger 
    that is immutable, secure, and extremely trustworthy. If any 
    block or any transaction or information on that block is 
    modifies, no matter how small, it will be discovered 
    immediately and the link between that block and all 
    subsequent blocks will be broken. 
    P2PKH address. Besides Blockchain connection 
    structure, Merkle Tree and the PoW mining algorithm 
    mentioned in the previous session, cryptographic hash 
    functions are also used in Bitcoin pay to public key hash 
    (P2PKH) addresses [46]. Hash functions and public key 
    cryptography are used to create the P2PKH address for the 
    Bitcoin user to send and receive funds (Fig. 4). Due to one-
    way function, it is impossible to reverse engineering from the 
    address to its public key and to its private key. 
    Fig. 4. Public Key Cryptography and Hash Function for Bitcoin Address. 
    The length of a key is not changed. The size of a private 
    keys is 32 bytes, and the size of a public key is 65 bytes (or 33 
    bytes for a compressed public key). The size of P2PKH 
    address is 20 bytes. 
    IV. 
    B
    LOCKCHAIN 
    A
    PPLICATIONS
    From the survey, the applications of Blockchain include 
    cryptocurrency, finance (stock exchange, financial services, 
    P2P financial market, crowdfunding, etc), Internet-of-Things 
    (IoT) (safety and privacy, e-business, etc), reputation system 
    (web community, academics, etc), security and privacy 
    (security enhancement, risk management, privacy protection, 
    etc) [3], healthcare, insurance, copyright protection, energy, 
    society 
    applications 
    (Blockchain 
    music, 
    Blockchain 
    government), advertising [47], defense, mobile applications, 
    supply chain, automotive [28], agricultural sector [48], 
    identity management, voting, education, law and enforcement, 
    asset tracking [49], digital records, intrusion detection [50], 
    digital ownership management, property title registries, and so 
    on. Fig. 5 illustrates the spiral increasing applications of 
    Blockchain technology. It is expected that more and more use 
    cases of Blockchain systems are emerging. 
    In the following sub-sessions, cryptocurrency as the first 
    application, supply chain as a widely use case and Smart 
    Dubai Office as a first whole government service application 
    are selected for the further information to be presented. 
    A. Cryptocurrencies 
    The first cryptocurrency is Bitcoin, which was announced 
    in 2008 and launched in 2009. The maximum number of 
    Bitcoin is 21 million BTC. Once one mining node (miner) 
    finds a nonce value that matches the difficulty and succeeds in 
    having a block accepted, the miner obtains a transaction fee 
    ($24 and $31) and a mining reward of 6.25 BTC at this 
    moment. For every 210,000 blocks (roughly 4 years), the 
    mining reward gets cut in half. Currently just under 90% of 
    BTC has been mined. After Bitcoin, the market cap of 
    H
    1
    H
    2
    T
    1
    H
    12
    T
    2
    H
    3
    H
    4
    T
    3
    T
    4
    H
    34
    Merkle Root i
    = H
    1234
    Merkle 
    Tree 
    Block i Header
    Hash of Previous 
    Block i-1 Header
    Version 
    Merkle Root i 
    Timestamp 
    Difficulty 
    Nonce 
    Block i Body
    Transactions: 
    T
    1, 
    T
    2, 
    T
    3, 
    T
    4
    Block i+1 Header
    Hash of Previous 
    Block i Header
    Version 
    Merkle Root i+1 
    Timestamp 
    Difficulty 
    Nonce 
    Block i+1 Body
    Transactions 
    in Block i+1 
    Block i-1 Header
    Hash of Previous 
    Block i-2 Header
    Version 
    Merkle Root i-1 
    Timestamp 
    Difficulty 
    Nonce 
    Block i-1 Body
    Transactions 
    in Block i-1 
    Private 
    Key 
    Public 
    Key 
    Address 
    ECC 
    Hash 
    Journal Pre-proof


    Ethereum (ETH) is roughly 19% of Bitcoin's size and ranks as 
    the second-largest cryptocurrency currently. Cryptoslate lists 
    2403 top cryptocurrencies by market capitalization in its coin 
    rankings [51]. Among them, 7 cryptocurrencies which are 
    mentioned as consensus use examples in the previous session 
    are shown in Table II. 
    Fig. 5. Blockchain Applications
    Pros of cryptocurrencies include:
    • 
    Cryptocurrencies are good use cases for 
    Blockchain which make full use of the advanced 
    features of Blockchain. 
    • 
    Payments go directly from one person to another. 
    • 
    The processing fee is tiny. 
    • 
    There are no delays and no limits for sending 
    money. 
    Cons of cryptocurrencies include: 
    • 
    There is no control, which may incur the black 
    money. 
    • 
    It may suffer the security attack and lose the 
    digital assets. 
    • 
    The government regulations are lacked and some 
    policies may be launched to manage or control 
    the cryptocurrencies.
    • 
    Some comments that it is highly risky and 
    speculative to invest in cryptocurrencies. For 
    example, Tesla alerted investors about the 
    volatility of Bitcoin’s price in its SEC filing [53].. 
    B. Supply Chains 
    Blockchain technology offers distributed ledgers that 
    create a permanent and shared record of every transaction. All 
    recorded transactions are visible to authorized participants, 
    traceable within the ledger, immutable and irrevocable, which 
    prompt the increasing usage of Blockchains for data sharing 
    in supply chains. For example, IBM has released permissioned 
    Blockchain-based data sharing solutions for supply chains 
    with a particular focus on logistic [3]; and the cold-chain 
    logistics solution from VeChain uses Blockchain to track and 
    monitor the logistic information for transparent, regulated, 
    secure and reliable data sharing [4]. In Makerchain [54], 
    twinning unique chemical signature data to Blockchain is 
    presented as an anti-counterfeiting method.
    In addition, various Blockchain technologies have been 
    presented to enhance the security, transparency, and 
    traceability of the supply chain. In [55], Blockchain 
    technology is used to secure smart manufacturing in industry 
    4.0 which addresses cybersecurity issues in the manufacturing 
    systems. In [56], Blockchain is used to achieve sustainability 
    from the manufacturing system perspective and the product 
    lifecycle management perspective. ManuChain [57] based on 
    a permissioned Blockchain network is presented to get rid of 
    unbalance/inconsistency between holistic planning and local 
    execution in individualized manufacturing systems.
    T
    ABLE 
    II.
    C
    RYPTOCURRENCIES 
    [52] 


    Download 0,66 Mb.
    1   2   3   4   5   6   7   8   9   10   ...   28




    Download 0,66 Mb.
    Pdf ko'rish