|
Amaliy mashg‘ulot ishi – 1
|
bet | 2/3 | Sana | 02.01.2024 | Hajmi | 351,4 Kb. | | #129594 |
def determinant(matrix):
# Matritsa determinantini hisoblash
# Sizning determinatni hisoblash funktsiyangiz bo'lishi kerak
def kramer_method(coefficients, constants):
n = len(coefficients)
det_main = determinant(coefficients) # Asosiy determinant
results = [] # Yechimlar ro'yxati
for i in range(n):
temp = [row[:] for row in coefficients] # Kofaktorlar uchun foydalanish uchun ko'pilyatsiya qilamiz
for j in range(n):
temp[j][i] = constants[j] # i-te o'zgaruvchi uchun bir necha joyda o'rnatingan burchak
det_temp = determinant(temp) # Temp determinatini hisoblash
results.append(det_temp / det_main) # Yechimlarni hisoblash va ro'yxatga joylash
return results
# Masalaning koeffitsiyentlar va tesiriy ko'nikmalari
coefficients = [[3, 5], [4, 3]]
constants = [9, 16]
# Kramer usulini ishlatib yechimlarni hisoblash
solution = kramer_method(coefficients, constants)
print("x =", solution[0], ", y =", solution[1])
2 masala
# Python3 program to calculate
# solutions of linear equations
# using cramer's rule
# This functions finds the
# determinant of Matrix
def determinantOfMatrix(mat):
ans = (mat[0][0] * (mat[1][1] * mat[2][2] -
mat[2][1] * mat[1][2]) -
mat[0][1] * (mat[1][0] * mat[2][2] -
mat[1][2] * mat[2][0]) +
mat[0][2] * (mat[1][0] * mat[2][1] -
mat[1][1] * mat[2][0]))
return ans
# This function finds the solution of system of
# linear equations using cramer's rule
def findSolution(coeff):
# Matrix d using coeff as given in
|
| |