Applications of attack mitigation mechanisms in energy networks, attack detection and preventive methods for security in the smart grid




Download 1,66 Mb.
Pdf ko'rish
bet4/6
Sana13.05.2024
Hajmi1,66 Mb.
#230080
1   2   3   4   5   6
Bog'liq
e3sconf greenenergy2024 03008

4 Encryption for Data Security 
Encryption mechanisms are intended to safeguard the confidentiality, integrity, and non-
disclaimer of data. Encryption may be symmetric or asymmetric. The most common 
algorithms in symmetric encryption are the standard encryption data (DES) and advanced 
Factories 
Homes 
Cities and offies 
Renewable energy 
Photovoltaic 
Unclear power 
plant 
Themal power 
plant 
Hydraulic power 
generation 
, 03008 (2024)
E3S Web of Conferences
https://doi.org/10.1051/e3sconf/202450803008
508
GreenEnergy 2023
3


standard encryption (AES) [13]. On the other hand, two keys for data encryption are used in 
asymmetric encryption: a private key and a public key (public key). RAS (Rivest-Shamir-
Adleman) is an asymmetric crypto algorithm key. In SG, different elements with their own 
computing potential coexist. It may be concluded that both the symmetric and the 
asymmetric key encryption, and their choice depend on various factors among which are 
data criticality, time limitations [14] and computational resources. 
Authentication is defined as the action of verifying the validity of the identity of an 
object, e.g., using a password. It may be a user, a smart device, or any connected item in the 
network of SG. Multicast authentication is a special authenticity type, and its applications 
are used extensively in SG. There are three methods of achieving authentication for multi-
emitting applications [15]: secret information asymmetry, time asymmetry and hybrid 
asymmetry. 
Key management is a critical approach to encryption and authenticity [16]. Managing 
public keys or managing shared secrets keys can be used to ensure authenticity for 
communication between networks. In the public key infrastructure (PKI), the identities of 
the two entities are stored by a certificate issued by a third party, an entity called the 
Certification Authority (CA). The mechanism is done prior to establishing connection 
between the two entities. In managing a common secret key, four steps are employed to 
maintain communication security: key creation, key distribution, key storage, and key 
update. Because of the distributed nature of SG, some specific requirements for management 
planning should be considered cryptographic key. Basic but important requirements of the 
management scheme key are efficiency, growth capacity, scalability, and safe management. 
Furthermore, several key management frameworks have been proposed especially for 
electricity systems, such as: unique key (single key), installing a key for SCADA systems 
(SKE), architecture key management for SCADA systems (SKMA), Advanced Architecture 
key management (ASKMA) ASKMA+ and tiered management method cryptographic key 
(SMOCK). The selection of a frame is determined by different criteria, including scalability, 
computing capacity resources and multipurpose support. Research has been conducted to 
compare among the abovementioned key management schemes. It was based on scalability, 
multi-emission support, resilience to key violation andapplication to electricity systems. 
ASKMA+ and SMOCK presented interesting outcomes. ASKMA+ is an effective key 
management scheme supporting multi¬emission, yet it suffers from scalability. SMOCK, on 
the other hand, presents good scalability, but it has got some weaknesses amongst which are 
nonsupport multi-emission and low computational efficiency. 

Download 1,66 Mb.
1   2   3   4   5   6




Download 1,66 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Applications of attack mitigation mechanisms in energy networks, attack detection and preventive methods for security in the smart grid

Download 1,66 Mb.
Pdf ko'rish