• Good problems to have for AI
  • TOPIC III. COMPUTER NETWORKS




    Download 3,9 Mb.
    Pdf ko'rish
    bet73/112
    Sana21.05.2024
    Hajmi3,9 Mb.
    #248349
    1   ...   69   70   71   72   73   74   75   76   ...   112
    Bog'liq
    4 PROFESSIONAL ENGLISH

     
    TOPIC III. COMPUTER NETWORKS 
    AI, machine learning and your access network 
    By GT Hill
     
    Artificial intelligence (AI) and machine learning are two of the latest networking buzzwords being 
    thrown around the industry. The problem is many enterprise network managers remain confused 
    about the real value of these vastly useful technologies. 
    Emerging network analytics services, powered by AI and machine learning promise to transform 
    traditional infrastructure management models by simplifying operations, lowering costs, and giving 
    unprecedented insights into the user experience – improving the productivity of both IT 
    professionals and their users. 
    For network staff, the concept and value of these technologies is extremely powerful if applied to 
    the right problems. 


    87 
    Good problems to have for AI 
    One big problem is today's operational challenge in dealing with the mass of user, device, 
    application and network service data traversing the enterprise access infrastructure. Machine 
    learning, if applied properly, is an ideal solution for making sense of all this data to figure out how 
    all the different parts of the network are behaving with each other.
    A second big problem is the need to automate the network within a grand closed loop. The use AI 
    and all this “big data” is key to making this happen. But first, the industry must get the ‘making 
    sense of the data’ part right among many other things. 
    Today, network managers must wade through volumes of data from Wi-Fi controllers, server logs, 
    wired packet data and application transactions, analyzing and correlating all this data to determine 
    the health of network as well as trends and patterns of network behavior across the stack that impact 
    user performance. Then, they manually apply changes to the network with no real way to 
    definitively determine whether those changes worked or not. 
    Conventional network management and monitoring tools, never designed or developed to deal with 
    these 21st century realities, are ill-equipped to automate this process. 

    Download 3,9 Mb.
    1   ...   69   70   71   72   73   74   75   76   ...   112




    Download 3,9 Mb.
    Pdf ko'rish