• In the IoT world, general-purpose databases can’t cut it
  • Leapfrogging Database as a Service




    Download 3,9 Mb.
    Pdf ko'rish
    bet71/112
    Sana21.05.2024
    Hajmi3,9 Mb.
    #248349
    1   ...   67   68   69   70   71   72   73   74   ...   112
    Bog'liq
    4 PROFESSIONAL ENGLISH

     
    Leapfrogging Database as a Service 
    The MarkLogic Data Hub provides business value beyond what is seen in any database at this time. 
    It handles different data types (e.g. documents, graphs, relational, and geospatial) from different 
    data sources (e.g. RDBMS, message buses, streaming data, etc.) to be integrated curated, mastered, 
    governed, searched, queried, and harmonized within a single architecture. 
    Trying to achieve similar capabilities with traditional approaches requires stitching together ten or 
    more different components on top of a database, which results in higher costs, complexity, 
    brittleness, and overhead. 
    See more at: 
    http://www.eweek.com/database/how-marklogic-data-hub-service-makes-mass-
    data-useful
      


    85 
    In the IoT world, general-purpose databases can’t cut it 
    By Linda Musthaler 
    We live in an age of instrumentation, where everything that 
    can 
    be measured 
    is 
    being measured so 
    that it can be analyzed and acted upon, preferably in real time or near real time. This 
    instrumentation and measurement process is happening in both the physical world, as well as the 
    virtual world of IT. 
    In the IT world, events are being measured to determine when to autoscale a system’s virtual 
    infrastructure. For example, a company might want to correlate a number of things taking place at 
    once — visitors to a website, product lookups, purchase transactions, etc. — to determine when to 
    burst the cloud capacity for a short time to accommodate more sales or other kinds of activity. 
    Much of this data is time-series data, where it’s important to stamp the precise time when an event 
    occurs, or a metric is measured. The data can then be observed and analyzed over time to 
    understand what changes are taking place within the system. 
    Time-series databases can grow quite large, depending on how many events or metrics they are 
    collecting and storing. Consider the case of autonomous vehicles, which are collecting and 
    evaluating an enormous number of data points every second to determine how the vehicle should 
    operate. A general-purpose database, such as a Cassandra or a MySQL, isn’t well suited for time-
    series data. A database that is purpose-built to handle time-series data has to have the following 
    capabilities, which general-purpose databases don’t have. 

    The database needs to be able to ingest data in almost real time. Some applications – like the 
    one for the autonomous vehicle – could conceivably produce millions or hundreds of 
    millions of data points per second, and the database must handle the ingest. 

    You have to be able to query the database in real time if you want to use the database to 
    monitor and control things, and the queries have to be able to run continuously. With a 
    general-purpose database, queries are batches and not streaming. 

    Compression of data is important and is relatively straight forward if the database is 
    specifically designed for time-series data. 

    You have to be able to evict data as fast as you ingest it. Time-series data is often only 
    needed for a specific period, such as a week or month, and then it can be discarded. Normal 
    databases aren’t constructed to remove data so quickly. 

    And finally, you have to be able to “down sample” by removing some but not all data. Say 
    you are taking in data points every millisecond. You need that data to be high resolution for 
    about a week. After that, you can get rid of much of the data, but keep some at a resolution 
    of one data point per second. In time-series data, high resolution is very important at first, 
    and then lower-resolution data is often fine for the longer term. 

    Download 3,9 Mb.
    1   ...   67   68   69   70   71   72   73   74   ...   112




    Download 3,9 Mb.
    Pdf ko'rish