• Theory is great. What now
  • Book · October 021 citations reads 35,829 authors




    Download 3,9 Mb.
    Pdf ko'rish
    bet74/112
    Sana21.05.2024
    Hajmi3,9 Mb.
    #248349
    1   ...   70   71   72   73   74   75   76   77   ...   112
    Bog'liq
    4 PROFESSIONAL ENGLISH

    First things first 
    Simply put, artificial intelligence is the development of computer systems able to perform tasks that 
    normally require (super) human intelligence. 
    Rather than forcing people to perform increasingly complex calculations from a variety of data 
    sources, work in AI has concentrated on mimicking human decision-making processes and carrying 
    out tasks in ever more human ways to enable more predictive problem solving. 
    Related to this, machine learning is an application of AI. It is a toolkit of algorithms that provide 
    systems the ability to automatically learn and improve from experience without being explicitly 
    programmed to do so.
    The process of learning begins with observations of data, and looking for trends, patterns and 
    anomalies within the data to make increasingly better correlations, inferences and predictions. 
    Machine learning software “learns” by discovering the processes that generate the observed 
    outcomes of particular inputs. Finally, machine learning provides a framework to make predictions 
    and recommendations as to what will improve the overall system. 
    Theory is great. What now? 
    So how can all this magic be usefully applied, in a practical way, to help IT and network staff drive 
    down costs, drive up productivity and deliver better user experience on the network? Machine 
    learning is the ideal tool to automate many of the traditional infrastructure management processes 
    that are performed manually. Specifically, in the context of enterprise access networks, it: 
    1.
    Eliminates costly and cumbersome manual analysis and correlation of myriad network data 
    sources by network staff, 
    2.
    Identifies specific and systemic user network performance problems across the entire IP 
    stack and makes recommendations and predictions on fixing them, 
    3.
    Delivers a single source of network truth that can be used by different factions within the 
    network team, each responsible for their own services, 
    4.
    Minimizes the finger-pointing among IT staff when issues arise, and 
    5.
    Predicts potential network problems and capacity requirements before they happen. 


    88 
    Because machines, not people, are staring at every client network transaction 24 hours a day, 
    network managers care able to determine who, what, when, where and why network problems are 
    occurring – and what do about them – even if they don't know where to look or what questions to 
    ask.
    Cisco, HPE, Mist and Nyansa, the top talkers in the market giving lots of lip service to the use of AI 
    and machine learning. Nyansa, the only of the four with a pure-play commercial offering of 
    machine learning for access networks. Its Voyance network analytics platform provides a good 
    glimpse into what can be practically achieved through the technology's application. 

    Download 3,9 Mb.
    1   ...   70   71   72   73   74   75   76   77   ...   112




    Download 3,9 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Book · October 021 citations reads 35,829 authors

    Download 3,9 Mb.
    Pdf ko'rish