Digital technologies in innovative education: problems and solutions




Download 7.45 Mb.
Pdf ko'rish
bet14/265
Sana22.12.2022
Hajmi7.45 Mb.
#36710
1   ...   10   11   12   13   14   15   16   17   ...   265
Bog'liq
Халкаро конференция 24.05.22
Qurilish mashinalari va uskunalarini ta\'mirlash (N.Mahmudova), 087-20g Abdusalomova Sitora guzallik saloni, Abdusalomova Sitora 2-labaratoriya extimollar, Konferensiya-2022-Mart-1-qism-60-65, Osiyo yo`lbarslari, Baýjanow BHäzirki zaman türkmen dili Morfologiýa 2014`TMDDI, O\'simlik moylar-WPS Office, 12588 1 2765FB8B2367BB537526EA46EB7CED9255E7B183, 1709273234
 
 
DESIGN AND VERIFICATION OF LORAWAN SECURITY WITH RSSI-
POSITION AND BYZANTINE FAULT TOLERANCE
 
M.Sarybay,
Satbayev University, PhD student, Almaty, Kazakhstan 
A.Saribaev
 
“Computer Technology” Kazakh National Academy of Art, 
associate professor, candidate of technical science,
Head of the Department Almaty, Kazakhstan 
Introduction. The LoRaWAN specification is a Low Power, Wide Area (LPWA) 
networking protocol designed to wirelessly connect battery operated ‘things’ to the internet 
in regional, national or global networks, and targets key Internet of Things (IoT) 
requirements such as bi-directional communication, end-to-end security, mobility and 
localization services. 
The LoRa radio technology and the LoRaWAN communication protocol have 
established themselves for LPWAN due various aspects such as low deployment costs and 
open specifications. LoRa is the name of a radio technology developed and patented by 
the US company Semtech, which enables energy-saving and long-range data transmission. 
A Chirp Spread Spectrum (CSS) technique is used to transmit symbols. There are six 
spreading factors (SF7 to SF12). Higher spreading factors allow a greater range at the 
expense of a lower data rate [2]. Semtech also specifies how a LoRa packet is structured. 
LoRa itself defines the packet structure: In addition to a preamble, which announces the 
message packet and synchronizes the receiver with the incoming data, the packet consists 
of an optional header and a field for the payload, which can be defined by higher layer 
protocols.


43 
LoRaWAN is a communication protocol that bases on LoRa and specifies mainly the 
medium access control (MAC) layer and network topology [9]. The LoRaWAN 
specification defines three transmission classes for end-devices. According to the 
specification, LoRaWAN devices must be able to implement at least Class-A [10]. In 
Class-A, the communication is based on an access method similar to pure-ALOHA. End-
devices always initiate the communication. An uplink message is followed by two one-
second intervals for incoming downlink messages from the network server [14]. 
Acknowledgements of incoming messages are optional. The procedure requires only little 
coordination effort. However, due to collisions, there is much more data loss with an 
increasing number of sent messages [11]. To keep the protocol as simple as possible, 
LoRaWAN only offers a stars-of-stars topology. Here, many end-devices communicate 
via gateways with a network server. According to the current LoRaWAN specification, 
direct point-to-point communication between the end-devices is not possible [12]. This is 
a problem for the approach of distributed verifiable identities: central instances are avoided 
for security reasons and the network nodes verity their respective identities. 
LoRaWAN defines three types of devices (Class A, B and C) with different 
capabilities [2]. Class A devices use pure ALOHA access for the uplink. After sending a 
frame, a Class A device listens for a response during two downlink receive windows. Each 
receive window is defined by the duration, an offset time and a data rate. Although offset 
time can be configured, the recommended value for each receive window is 1 sec and 2 
sec, respectively. Downlink transmission is only allowed after a successful uplink 
transmission. The data rate used in the first downlink window is calculated as a function 
of the uplink data rate and the receive window offset. In the second window the data rate 
is fixed to the minimum, 0.3 kbps. Therefore, downlink traffic cannot be transmitted until 
a successful uplink transmission is decoded by the gateway. The second receive window 
is disabled when downlink traffic is received by the end-device in the first window. Class 
A is the class of LoRaWAN devices with the lowest power consumption. Class B devices 
are designed for applications with additional downlink traffic needs. These devices are 
synchronized using periodic beacons sent by the gateway to allow the schedule of 
additional receive windows for downlink traffic without prior successful uplink 


44 
transmissions. Obviously, a trade-off between downlink traffic and power consumption 
arises. Finally, Class C devices are always listening to the channel except when they are 
transmitting. Only class A must be implemented in all end-devices, and the rest of classes 
must remain compatible with Class A. In turn, Class C devices cannot implement Class B. 
The three classes can coexist in the same network and devices can switch from one class 
to another. However, there is not a specific message defined by LoRaWAN to inform the 
gateway about the class of a device and this is up to the application. 
Figure 1 – LoRa classes and band 
LoRaWAN defines the communication protocol and system architecture for the 
network while the LoRa physical layer enables the long-range communication link. The 
protocol and network architecture have the most influence in determining the battery 
lifetime of a node, the network capacity, the quality of service, the security, and the variety 
of applications served by the network. 
LoRa uses Industrial, Scientific, and Medical (ISM) frequencies, and every country 
or region has its frequency band. Europe uses 868 MHz, while the USA, Brazil, and 
Australia use 915 MHz, for example. Each country also uses a sub-band frequency scheme 
to create channels of transmissions. Each sub-band is composed of several frequencies 
called channels. Australia, for example, uses sub-bands composed of eight channels 
(frequencies) using 125 kHz bandwidth. The sub-band is essential to separate networks in 
the same area by using different frequencies. non-specialized SRD devices operating in 
the frequency ranges 863-868 MHz with a channel width of 100 KHz (up to 25 mw) can 
be used on the territory of the Republic of Kazakhstan without obtaining permits. 


45 
The goal of this article is to bring some sanity to these statements, by providing a 
comprehensive, fair and independent verification and design of LoRaWAN security with 
RSSI-position and Byzantine Fault Tolerance.
We design and verify the model for LoRaWAN with RSSI-position and Byzantine 
Fault Tolerance. Section II analyzes the methods of design and verification of the 
technology. Section III discusses the results of verification models to using BFT and RSSI-
position for LoRaWAN security.
Research methods. We have placed our effort in researching and identifying the 
formal verification and LoRa WAN mesh protocol, testing the Sensor Chain 
Communication tree, verifying our model, starting programming with LoRa. Figure 2 
describes the algorithm of determine accept / reject of Distrust – Alerts.
BFT protocols are commonly designed to achieve state-machine replication, where 
processes agree on an ordered set of incoming requests from clients, creating an input log 
that is equal on all processes. Running a deterministic state machine on the log then 
produces the same results on each node. The design goals in this problem space are usually 
low latency and high throughput, enabling the protocol to handle a high volume of requests 
quickly. 
This paper considers the related but slightly different problem of BFT log replication. 
In this problem, a set of n nodes, of which at most f may fail, periodically run a distributed 
algorithm to maintain a log [1].
We have successfully validated the first model of Sensor Chain Communication Tree. 
We are currently making new modifications for the testing of our model. 

Download 7.45 Mb.
1   ...   10   11   12   13   14   15   16   17   ...   265




Download 7.45 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Digital technologies in innovative education: problems and solutions

Download 7.45 Mb.
Pdf ko'rish