1.11-rasm. Hisoblash blok-sxemasi
3-misol. Quyidagi ifoda bilan berilgan munosabatni hisoblang [2, 52 b.].
b x, Y x a,
a b,
agar x 0, agar x 0,
aks holda .
Bu misol natija x ning qiymatiga bog‘liq shart bilan berilgan va masala
quyidagicha so‘zlar orqali ifodalangan algoritm asosida aniqlanadi: agar x > 0 bo‘lsa, u holda u = b - x bo‘ladi, aks holda;
agar x < 0 bo‘lsa, u holda u = x + a, aks holda u = a+ b.
aga x
Avvalo, birinchi shart tekshiriladi va agar u bajarilsa, y = b - x amal bajariladi, aks holda Y x a, aksrholda . 0, munosabat hisoblanadi.
Bu fikrlar quyidagi blok-sxemada o‘z aksini topgan (1.12-rasm). 19
1.12-rasm. Hisoblash blok-sxemasi
Ba’zan takrorlanuvchi algoritmlar bir nechta parametrga bog‘liq bo‘ladi. Odatda bunday algoritmlar ichma-ich joylashgan jarayonlar deb ataladi.
n
n
1-misol. Munosabatni hisoblang: S (i j)2 . i1 j1
Yig‘indi hisoblash uchun, i indeksning har bir qiymatida j indeks bo‘yicha ko‘paytmani hisoblab, avval yig‘indi ustiga ketma-ket qo‘shib borish kerak bo‘ladi. Bu jarayon quyidagi ichma-ich joylashgan jarayonga doir blok–sxemada aks ettirilgan (1.22-rasm). Bu yerda indeks i dan tashqi takrorlash yig‘indi uchun, j-dan esa-ichki takrorlash - ko‘paytmani hosil qilish uchun foydalanilgan.
1.22-rasm. Ichma-ich joylashgan algoritmga doir blok-sxema
Shu bilan birga, keltirilgan murakkab munosabatni ikki nisbatan sodda munosabatlar ketma-ketligi bilan almashtirish (dekompozitsiya amali) maqsadga
muvofiq:
1)
n
i
n
P (i j)2 ,i 1,2,...,n; 2) S P i . j1 i1
2-misol. B = b[i] (i=1,2,…,n) massiv elementlarini o‘sish (kamayish)
tartibida joylashtirish algoritmi va dasturini yaratish uchun yuqorida keltirilgan
massiv elementlarining minimal (maksimal) qiymatli elementi va uning indeksini aniqlash algoritmidan foydalaniladi va quyidagi amallar ketma-ketligi bajariladi (bunda algoritmning so‘zlar orqali ifodalangan usulidan foydalaniladi) [2, 16-18 b.]:
1) kiritish (bi , n); 2) i=1;
3) massivning i chidan to n chi elementlari orasidagi eng kichik (katta) element - z va uning indeksi - k aniqlanadi;
4) “uch likobcha” usuli asosida i-chi va minimal (maksimal) qiymatli elementlar joyma-joy almashtiriladi: c=b[i]; b[i]= z; b[k]=c, bunda c - yordamchi o‘zgaruvchi;
5) i=i+1;
6) agar ibo‘lsa, u holda =(2).
Yuqoridagi algoritmning amallar ketma-ketligini to‘laligicha keltiramiz: 1) kiritish (n, bi )
2) i =1; 3) z = b i ; 4) k = i;
5) j = i +1;
6) agar ( z < bj ) shart bajarilsa, u holda {z= bj; k=j;} 7) j = j + 1;
8) agar ( j <= n ) shart bajarilsa, u holda =(6) 9) c = bi;
|