• FOYDALANILGAN ADABIYOTLAR
  • Mashinani o’qitish tili fanidan




    Download 345,07 Kb.
    bet11/11
    Sana14.05.2024
    Hajmi345,07 Kb.
    #232474
    1   2   3   4   5   6   7   8   9   10   11
    Bog'liq
    GRADIENT TUSHISH









    XULOSA


    Neyron tarmoqlarini turli sohalarda qo‘llanilishi tufayli ular asosida hal qilinadigan turli xil vazifalar shakllantirilmoqda, bu masalalar kirish ma’lumotlarining aniqlanishi va turlari bilan ajralib turadi, ya’ni tasvirlarni anglash, matnlarni tahlil qilish, kasalliklarni tashxislash va boshqa masalalarni hal qilishda neyron tarmoqlaridan foydalanilmoqda. Hisoblash tajribasi natijalari shuni ko‘rsatdiki, moment usuli va SGD turli xil konfiguratsiyalar tarmoqlari uchun berilgan ma’lumotlar to‘plamida eng yaxshi natijalarni ko‘rsatdi. SGD va moment usuli davomida erishilgan natijalarning aniqligi, xususan, dastlabki namuna muvozanatli ekanligi bilan izohlanadi, bu esa o‘z navbatida ushbu usullarning ishlashiga ijobiy ta’sir ko‘rsatadi.


    FOYDALANILGAN ADABIYOTLAR




    1. Jordan, J. Intro to optimization in deep learning: Gradient Descent/ J. Jordan // Paper-space. Series: Optimization. – 2018. – URL: https://blog.paperspace.com/intro-to- optimiza-tion-in-deep-learning-gradient-descent/

    2. Scikit-learn – машинное обучение на Python. – URL: http://scikit- learn.org/stable/ modules/generated/sklearn.neural_network. MLPClassifier.html

    3. Keras documentation: optimizers. – URL: https://keras.io/optimizers

    4. Ruder, S. An overview of gradient descent optimization algorithms / S. Ruder // Cornell University Library. – 2016. – URL: https://arxiv. org/abs/1609.04747

    5. Robbins, H. A stochastic approximation method / H. Robbins, S. Monro // The annals of mathematical statistics. – 1951. – Vol. 22. – P. 400–407.

    6. Kukar, M. Cost-Sensitive Learning with Neural Networks / M. Kukar, I. Kononenko

    // Machine Learning and Data Mining : proceed-ings of the 13th European Conference on Artifi-cial Intelligence. – 1998. – P. 445–449.

    1. Duchi, J. Adaptive Subgradient Methods for Online Learning and Stochastic Optimiza-tion / J. Duchi, E. Hazan, Y. Singer // The Jour-nal of Machine Learning Research.

    – 2011. – Vol. 12. – P. 2121–2159.

    1. Zeiler, M. D. ADADELTA: An Adap-tive Learning Rate Method / Cornell Univer-sity Library. – 2012

    Download 345,07 Kb.
    1   2   3   4   5   6   7   8   9   10   11




    Download 345,07 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Mashinani o’qitish tili fanidan

    Download 345,07 Kb.