Namangan Institute of Engineering and Technology




Download 15,56 Mb.
Pdf ko'rish
bet231/693
Sana13.05.2024
Hajmi15,56 Mb.
#228860
1   ...   227   228   229   230   231   232   233   234   ...   693
Bog'liq
Тўплам

Namangan Institute of Engineering and Technology 
nammti.uz 
10.25.2023
Pg.209 
 

 

0
1
exp
k m
n
r
ik r
z
z
S



 


(3) 
This function describes localized motion in the YZ plane and the state of motion of a free 
electron along the X axis. In equation (3), the 


0
n
z
z


function is responsible for localized 
motion. Then the solution to equation (3) will be as follows: 
2
2
*
2
2
0
0
0
*
2
1
( )
(
)
(
)
(
)
2
2
c
n
n
n
d
V z
m
z
z
z
z
E
z
z
m dz
















(4) 
Here, 
0
*
,
y
c
k
eB
z
eB
m

 

. Equation (4) is called the equation of a quantum harmonic 
oscillator, the motion of which is additionally limited by a quantum well, and E
n
is a discrete level. 
In a quantizing magnetic field, if the width of the quantum well increases, the energy spectrum 
of free electrons will increase. That is, 
a
eB

 
. Here, a is the width of the quantum well, 

is 
the magnetic length, which is equal in magnitude to the radius of the characteristic orbit of an 
electron in a quantizing magnetic field. Hence, the discrete energy levels E
n
will be equal to the 
energies of the harmonic quantum oscillator: 
1
,
0,1, 2, 3....
2
N
c
E
N
N










(5) 
According to equation (2), the velocity and momentum of charge carriers in the direction of 
the quantizing magnetic field can take any values. In other words, the motion of free electrons and 
holes in the direction of the XY plane (i.e., along the X axis) is not quantized. Hence, the total energy 
of free electrons in two-dimensional electron gases in the presence of a magnetic field directed 
along the X axis is determined by the following expression: 
2
2
1
2
2
X
N
c
k
E
N
m










(6) 
Where, 
1
2
c
N








is the energy of motion of a free electron in the YZ plane, these energies 
are called discrete Landau levels. 
2
2
2
X
k
m
is the energy of continuous motion along the X axis. Thus, 
in the presence of a longitudinal magnetic field, due to the quantization of the orbital motion of 
charge carriers in the YZ plane, the allowed energy zone is split into one-dimensional magnetic 
subbands, that is, into discrete Landau levels. 
In three-dimensional and two-dimensional electron gases, a change in the energy spectrum 
of charge carriers leads to a change in the oscillations of the density of states in a quantizing 
magnetic field.
Now, let us first calculate the oscillations of the density of energy states in two-dimensional 
electron gases in the presence of a longitudinal strong magnetic field. When the width of the 
quantum well becomes comparable to the de Broglie wavelength, in two-dimensional 
semiconductor materials, then quantization occurs. That is, 
Z
D
L


and 
Y
Z
L
L

. Hence, in the 
YZ plane, the cyclotron mass is calculated by the expression: 
2
Y
c
L
m
E




(7) 
For a parabolic dispersion law, the effective cyclotron mass will be constant. The energy in the 
interval between the two Landau levels is 
c
E

 
. Hence, for a two-dimensional semiconductor 
material, we find the difference in the section length of two isoenergy surfaces: 



Download 15,56 Mb.
1   ...   227   228   229   230   231   232   233   234   ...   693




Download 15,56 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Namangan Institute of Engineering and Technology

Download 15,56 Mb.
Pdf ko'rish