• IN QUANTIZING MAGNETIC FIELDS R.G.Rakhimov Namangan Institute of Engineering and Technology Annotation
  • Namangan Institute of Engineering and Technology




    Download 15,56 Mb.
    Pdf ko'rish
    bet245/693
    Sana13.05.2024
    Hajmi15,56 Mb.
    #228860
    1   ...   241   242   243   244   245   246   247   248   ...   693
    Bog'liq
    Тўплам

    Namangan Institute of Engineering and Technology 
    nammti.uz 
    10.25.2023
    Pg.224 
    TEMPERATURE DEPENDENCE OF THE SPECTRAL DENSITY OF STATES IN SEMICONDUCTORS 
    IN QUANTIZING MAGNETIC FIELDS 
     
    R.G.Rakhimov 
    Namangan Institute of Engineering and Technology 
     
    Annotation: In this article, a mathematical model for Shubnikov-de Haas oscillations in 
    semiconductors upon absorption of microwave radiation is obtained and its temperature 
    dependence is studied. A two-dimensional image of microwave magnetoabsorption oscillations in 
    narrow-gap semiconductors is constructed. Using a mathematical model, oscillations of microwave 
    magnetoabsorption are considered for various values of the electromagnetic field. The calculation 
    results are compared with experimental data. The proposed model explains the experimental 
    results in semiconductor structures at various temperatures. 
    Keywords: semiconductor, electron gas, oscillation, microwave, Landau levels, electric field, 
    mathematical model, Shubnikov-de Haas oscillations. 
    Let us now consider the temperature dependence of the spectral density of states in 
    quantizing magnetic fields using the distribution of the Gaussian, Lorentzian and the energy 
    derivative of the Fermi-Dirac function. In work [1], oscillations of the spectral density of states in 
    narrow-gap semiconductors were studied. The following expression was obtained for the density of 
    energy states in quantizing magnetic fields for narrow-gap semiconductors: 


    max
    3
    2
    1
    2
    2
    3
    2
    0
    2
    1
    ( )
    ,
    2
    1
    (2)
    (
    )
    2
    N
    g
    k
    N
    g
    E
    E
    m
    eH
    N
    E H
    mc
    E
    eH
    E
    N
    E
    mc








    (1) 
    Here, 


    ,
    k
    N
    E H
    is the spectral density of states for the zone with the Kane dispersion law, H 
    is the magnetic field strength, E is the energy of a free electron and hole in a quantizing magnetic 
    field, N is the number of Landau levels, and E
    g
    is the band gap of the semiconductor. 
    This formula is applicable only for narrow-gap (
    0.6
    g
    E
    eV

    ) materials. As can be seen from 
    this formula, if 
    g
    E
     
    (for wide-gap semiconductors) then 
    2
    0
    g
    E
    E

    and 
    2
    0
    g
    E
    E

    , then formula 
    (4) turns into the density of states of the band with a parabolic dispersion law [2]: 


    max
    3
    2
    1
    2
    3
    2
    0
    ( )
    1
    ,
    2
    1
    (2)
    (
    )
    2
    N
    s
    N
    m
    eH
    N
    E H
    mc
    eH
    E
    N
    mc






    (2) 
    If the energy spectrum of electrons is discrete, then the density of energy states is equal to 
    the sum of δ-functions concentrated at points of the spectrum Е
    i
    , whose amplitude is 
    ),
    0
    (
    )
    0
    (
    2
    `
    2
    i
    i
    si
    N




    where 
    ( )
    i
    x

    are the eigenfunctions normalized to unity [3]: 
    )
    (
    )
    (
    i
    i
    si
    s
    E
    E
    N
    E
    N




    (3) 
    In the general case, the spectral density of energy states is a set of δ - functional peaks located 
    from each other by ħ

    c
    in a quantizing magnetic field [4].



    Download 15,56 Mb.
    1   ...   241   242   243   244   245   246   247   248   ...   693




    Download 15,56 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Namangan Institute of Engineering and Technology

    Download 15,56 Mb.
    Pdf ko'rish