• X.B.Madaliyev, J.J.Jumabayev Namangan Institute of Engineering and Technology Abstract
  • THE APPLICATION OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE AND




    Download 15,56 Mb.
    Pdf ko'rish
    bet404/693
    Sana13.05.2024
    Hajmi15,56 Mb.
    #228860
    1   ...   400   401   402   403   404   405   406   407   ...   693
    Bog'liq
    Тўплам

    THE APPLICATION OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE AND 
    PROCESS OPTIMIZATION IN MANUFACTURING AND INDUSTRIAL SETTINGS 
     
    X.B.Madaliyev, J.J.Jumabayev 
    Namangan Institute of Engineering and Technology 
     
    Abstract: Predictive maintenance and process optimization are becoming increasingly 
    important in manufacturing and industrial settings. The application of machine learning algorithms 
    shows great promise for improving maintenance schedules and optimizing industrial processes. This 
    article provides an overview of how different machine learning techniques can be applied to 
    predictive maintenance and process optimization in the manufacturing and industrial sectors. The 
    benefits, challenges, and future outlook are also discussed. Overall, machine learning has the 
    potential to significantly enhance maintenance protocols, reduce downtime, improve yield, and cut 
    costs in manufacturing environments. 
    Key words: machine learning, predictive maintenance, process optimization, manufacturing, 
    supervised learning, unsupervised learning, deep learning, sensor data, anomaly detection. 
     


    Namangan Institute of Engineering and Technology 
    nammti.uz 
    10.25.2023
    Pg.376 
    Introduction. Manufacturing and industrial facilities generate vast amounts of data through 
    sensors, control systems, and equipment logs. This data contains valuable insights that can be 
    utilized to make maintenance predictive and processes more efficient. However, transforming raw 
    data into actionable insights requires advanced analytical capabilities. This is where machine 
    learning algorithms come into play. Machine learning refers to the use of artificial intelligence (AI) 
    that provides systems the ability to automatically learn and improve from experience without being 
    explicitly programmed. Machine learning algorithms can analyze manufacturing and industrial data 
    to uncover patterns and relationships that would be difficult or impossible to discover using 
    traditional rule-based techniques. 
    There are several types of machine learning algorithms, including supervised learning, 
    unsupervised learning, and reinforcement learning. Supervised learning algorithms train on labeled 
    example data, while unsupervised algorithms find hidden patterns and associations in unlabeled 
    data. Reinforcement learning optimizes decision making through trial-and-error interactions with 
    an environment. Each technique offers different benefits for predictive maintenance and process 
    optimization. This article explores key applications of machine learning algorithms within 
    manufacturing and industrial settings. 

    Download 15,56 Mb.
    1   ...   400   401   402   403   404   405   406   407   ...   693




    Download 15,56 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    THE APPLICATION OF MACHINE LEARNING ALGORITHMS FOR PREDICTIVE MAINTENANCE AND

    Download 15,56 Mb.
    Pdf ko'rish