• Matritsalarning operator bolmagan normalari
  • Normativlarga misollar
  • Frobenius normasi
  • O’zbekiston raqamli tehnalogiyalar vazirligi muhammad al xorazmiy nomidagi




    Download 108,14 Kb.
    bet5/11
    Sana13.05.2024
    Hajmi108,14 Kb.
    #229637
    1   2   3   4   5   6   7   8   9   10   11
    Bog'liq
    O’zbekiston raqamli tehnalogiyalar vazirligi muhammad al xorazmi

    Operator normalariga misollar


    Spektral normaning xususiyatlari:

    1. Operatorning spektral normasi maksimalga teng yagona raqam bu operator.

    2. Spektral norma oddiy operator ga teng mutlaq qiymat maksimal modul o'z qiymati bu operator.

    3. Matritsani ko'paytirishda spektral norma o'zgarmaydi ortogonal (unitar) matritsa.
      1. Matritsalarning operator bo'lmagan normalari


    Operator normalari bo'lmagan matritsa normalari mavjud. Matritsalarning operator bo'lmagan normalari tushunchasini Yu.I.Lyubich kiritgan va G.R.Belitskiy tomonidan o'rganilgan.

    Operator bo'lmagan normaga misol


    Misol uchun, ikki xil operator normalarini ko'rib chiqing ‖ A ‖ 1 (\displaystyle \|A\|_(1)) Va ‖ A ‖ 2 (\displaystyle \|A\|_(2)) qator va ustun normalari kabi. Yangi normani shakllantirish ‖ A ‖ = m a x (‖ A ‖ 1 , ‖ A ‖ 2) (\displaystyle \|A\|=max(\|A\|_(1),\|A\|_(2)). Yangi norma halqasimon xususiyatga ega ‖ A B ‖ ≤ ‖ A ‖ ‖ B ‖ (\displaystyle \|AB\|\leq \|A\|\|B\|), birlikni saqlaydi ‖ I ‖ = 1 (\displaystyle \|I\|=1) va operator emas.
      1. Normativlarga misollar

    Vektor p (\displaystyle p)-norma


    Ko'rib chiqish mumkin m × n (\displaystyle m\times n) matritsa o'lcham vektori sifatida m n (\displaystyle mn) va standart vektor normalaridan foydalaning:
    ‖ A ‖ p = ‖ v e c (A) ‖ p = (∑ i = 1 m ∑ j = 1 n | a i j | p) 1 / p (\displaystyle \|A\|_(p)=\|\mathrm ( vec) (A)\|_(p)=\left(\sum _(i=1)^(m)\sum _(j=1)^(n)|a_(ij)|^(p)\ o'ngda)^(1/p))

    Frobenius normasi


    Frobenius normasi, yoki evklid normasi uchun p-normaning alohida holatidir p = 2 : ‖ A ‖ F = ∑ i = 1 m ∑ j = 1 n a i j 2 (\displaystyle \|A\|_(F)=(\sqrt (\sum _(i=1)^(m)\sum _(j) =1)^(n)a_(ij)^(2)))).
    Frobenius normasini hisoblash oson (masalan, spektral norma bilan solishtirganda). U quyidagi xususiyatlarga ega:
    ‖ A x ‖ 2 2 = ∑ i = 1 m | ∑ j = 1 n a i j x j | 2 ≤ ∑ i = 1 m (∑ j = 1 n | a i j | 2 ∑ j = 1 n | x j | 2) = ∑ j = 1 n | x j | 2 ‖ A ‖ F 2 = ‖ A ‖ F 2 ‖ x ‖ 2 2 . (\displaystyle \|Ax\|_(2)^(2)=\sum _(i=1)^(m)\chap|\sum _(j=1)^(n)a_(ij)x_( j)\right|^(2)\leq \sum _(i=1)^(m)\left(\sum _(j=1)^(n)|a_(ij)|^(2)\sum _(j=1)^(n)|x_(j)|^(2)\o'ng)=\sum _(j=1)^(n)|x_(j)|^(2)\|A\ |_(F)^(2)=\|A\|_(F)^(2)\|x\|_(2)^(2).)

    • Submultiplikativlik: ‖ A B ‖ F ≤ ‖ A ‖ F ‖ B ‖ F (\displaystyle \|AB\|_(F)\leq \|A\|_(F)\|B\|_(F)), chunki ‖ A B ‖ F 2 = ∑ i, j | ∑ k a i k b k j | 2 ≤ ∑ i , j (∑ k | a i k | | b k j |) 2 ≤ ∑ i , j (∑ k | a i k | 2 ∑ k | b k j | 2) = ∑ i , k | a i k | 2 ∑ k , j | b k j | 2 = ‖ A ‖ F 2 ‖ B ‖ F 2 (\displaystyle \|AB\|_(F)^(2)=\sum _(i,j)\left|\sum _(k)a_(ik) b_(kj)\right|^(2)\leq \sum _(i,j)\left(\sum _(k)|a_(ik)||b_(kj)|\right)^(2)\ leq \sum _(i,j)\left(\sum _(k)|a_(ik)|^(2)\sum _(k)|b_(kj)|^(2)\o'ng)=\sum _(i,k)|a_(ik)|^(2)\sum _(k,j)|b_(kj)|^(2)=\|A\|_(F)^(2)\| B\|_(F)^(2)).

    • ‖ A ‖ F 2 = t r ⁡ A ∗ A = t r ⁡ A A ∗ (\displaystyle \|A\|_(F)^(2)=\mathop (\rm (tr)) A^(*)A=\ mathop (\rm (tr)) AA^(*)), Qayerda t r ⁡ A (\displaystyle \mathop (\rm (tr)) A) - matritsa izi A (\displaystyle A), A ∗ (\displaystyle A^(*)) - Hermit konjugati matritsasi.

    • ‖ A ‖ F 2 = r 1 2 + r 2 2 + ⋯ + r n 2 (\displaystyle \|A\|_(F)^(2)=\rho _(1)^(2)+\rho _ (2)^(2)+\nuqtalar +\rho _(n)^(2)), Qayerda r 1 , r 2 , … , r n (\displaystyle \rho _(1),\rho _(2),\nuqtalar,\rho _(n)) - birlik raqamlar matritsalar A (\displaystyle A).

    • ‖ A ‖ F (\displaystyle \|A\|_(F)) matritsani ko'paytirishda o'zgarmaydi A (\displaystyle A) chapga yoki o'ngga ortogonal (unitar) matritsalar.

    Download 108,14 Kb.
    1   2   3   4   5   6   7   8   9   10   11




    Download 108,14 Kb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    O’zbekiston raqamli tehnalogiyalar vazirligi muhammad al xorazmiy nomidagi

    Download 108,14 Kb.