• 10.9. Ko‘p omilli chiziqli regressiya tenglamasini aniqlash
  • Ko‘p o‘lchovli korrelyatsiya. Muhim va mohiyatli omillarni tanlash




    Download 7,16 Mb.
    bet185/275
    Sana19.09.2020
    Hajmi7,16 Mb.
    #11452
    1   ...   181   182   183   184   185   186   187   188   ...   275
    10.8. Ko‘p o‘lchovli korrelyatsiya. Muhim va mohiyatli omillarni tanlash
    Korrelyatsion bog‘lanishning xususiyati regressiya tenglamasida bir necha muhim va mohiyatli omillar ishtirok etishini taqozo qiladi. Shuning uchun regressiya tenglamasiga kiritiladigan mohiyatli omillarni tanlash katta ahamiyatga egadir.

    Ko‘p omilli regressiya tenglamasida o‘zaro kuchli chiziqli korrelyatsion bog‘langan omillar bir vaqtda ishtirok etmasligi kerak. Chunki ular regressiya tenglamasida bir-birini ma’lum darajada takrorlab, natijada regressiya va korrelyatsiya ko‘rsatkichlarining buzilishiga sababchi bo‘ladi. Demak, tanlangan omillar ichida o‘zaro kuchli chiziqli korrelyatsion bog‘lanishda bo‘lgan omillardan ba’zilarini regressiya tenglamasiga kiritmaydi. Buning uchun chiziqli juft korrelyatsiya koeffitsiyentlarining matritsasi tuziladi.


    10.9. Ko‘p omilli chiziqli regressiya tenglamasini aniqlash
    Ko‘p omilli regressiyaning chiziqli tenglamasi umumiy ko‘rinishda quyidagicha yoziladi:

    . (10.28)

    Bu yerda:



    - natijaviy belgining o‘zgaruvchan o‘rtacha miqdori bo‘lib, uning indekslari regressiya tenglamasiga kiritilgan omillarning tartib sonlarini ko‘rsatadi;

    a0 - ozod had;

    aj – xususiy regressiya koeffitsiyentlari.

    Ko‘p omilli regressiya tenglamasining parametrlarini hisoblash «eng kichik kvadratlar» usuliga asoslanib hosil qilinadigan ushbu normal tenglamalar tizimini yechishga tayanadi:



    (10.29)

    Normal tenglamalar tizimi chiziqli algebraning biror usulini qo‘llab yechiladi va noma’lum hadlar topiladi. yechishni ShEHMda bajarish uchun maxsus «Microstat», «Statgraphics», «Statistica» kabi amaliy dasturlar paketi yaratilgan.




    Xususiy regressiya koeffitsiyenti muayyan omilning natijaviy belgi variatsiyasiga ta’sirini omillar o‘zaro bog‘lanishidan «tozalangan» holda o‘lchaydi, ammo tenglamaga kiritilmagan omillar bundan mustasnodir.

    Ta’kidlab o‘tish kerakki, xususiy regressiya koeffitsiyenti , juft regressiya koeffitsiyentidan farqli o‘laroq, muayyan omilning natijaga ta’sirini uning variatsiyasi bilan boshqa tenglamada qatnashayotgan omillar variatsiyasi orasidagi bog‘lanishni hisobga olmagan holda, undan «tozalangan» tarzda o‘lchaydi.

    Xususiy regressiya koeffitsiyentlari aj nomli miqdorlardir, ular turli o‘lchov birliklarda ifodalanadi va sifat (ma’no) jihatidan har xil omillar ta’sirini o‘lchaydi. Demak, ular bir biri bilan taqqoslama emas.



    Shuning uchun standartlashtirilgan xususiy regressiya koeffitsiyentlari yoki  - koeffitsiyentlar hisoblanadi:

    (10.30)


     standartlashgan regressiya ko‘rsatkichlari taqqoslama nisbiy me’yorlar, ularda o‘lchov birliklari va belgilar mohiyati mavhumlashgandir.

    xj omilga tegishli j – koeffitsiyent muayyan omil variatsiyasining natijaviy belgi
    Download 7,16 Mb.
    1   ...   181   182   183   184   185   186   187   188   ...   275




    Download 7,16 Mb.

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    Ko‘p o‘lchovli korrelyatsiya. Muhim va mohiyatli omillarni tanlash

    Download 7,16 Mb.