|
Patok talabasi Kamalova Rushananing
|
bet | 10/10 | Sana | 16.05.2024 | Hajmi | 0,7 Mb. | | #237305 |
s:=s+f(a+(i-1)*h);
J:=h*s; textcolor(13);
writeln(‘integral kiymati J=’,J:3:4);
end.
|
|
|
To’g’ri to’rtburchaklar, trapetsiya va Simpson usullarida hisoblang. N bo’lish soni, E=0.001.
|
|
[0;1]
|
12
|
1.To’rtburchaklar usuli.
#include
#include
using namespace std;
float f(float a, float b, float N)
{
float h = (b - a)/N;
float x, s = 0,e=2.75;
for(int i = 1; i <= N; i++)
{
x = a + i*h;
s += (log(pow(x,2)+3)/log(e))*pow(sin(x+1),2);
}
s *= h;
return s;
}
int main()
{
cout << endl << " f(x) = (log(pow(x,2)+3)/log(e))*pow(sin(x+1),2)" << endl;
cout << endl << " Integralni hisoblashning To'g'ri to'rtburchaklar usuli:" << endl << endl;
float a, b, N;
cout << " a = ";
cin >> a;
cout << " b = ";
cin >> b;
cout << " N = ";
cin >> N;
cout << " S = " << f(a, b, N) << endl;
return 0;
}
2.Trapetsiya usuli.
#include
#include
using namespace std;
int main () {
double a , b , N , sum1 = 0, sum2 = 0, h, x, e=2.75;
cout << "a= "; cin >>a;
cout << "b= "; cin >>b;
cout << "N= "; cin >>N;
h = (b - a) / N;
for(int i = 1; i <= N - 1; i++)
{
x = a + (i * h);
sum1 += 2 * (log(pow(x,2)+3)/log(e))*pow(sin(x+1),2);
}
sum2 = h/2 * (sum1 + (log(pow(a,2)+3)/log(e))*pow(sin(a+1),2) + (log(pow(b,2)+3)/log(e))*pow(sin(b+1),2));
cout << "Trapitsiya usulida yechim: " << sum2;
}
3.Simpson usuli
#include
#include
using namespace std;
int main () {
double a , b , N , sum1 = 0, sum2 = 0, sum, h, x, e=2.75,m;
cout << "a= "; cin >>a;
cout << "b= "; cin >>b;
cout << "N= "; cin >>N;
h = (b - a) / N;
m=N/2;
for(int i = 1; i <= 2*m-1; i+=2)
{
x = a + (i * h);
sum1 += (log(pow(x,2)+3)/log(e))*pow(sin(x+1),2);
}
for(int i=2; i<=2*m-2; i+=2) {
x = a + (i * h);
sum2 += (log(pow(x,2)+3)/log(e))*pow(sin(x+1),2);
}
sum=h/3*((log(pow(a,2)+3)/log(e))*pow(sin(a+1),2)+(log(pow(x,2)+3)/log(e))*pow(sin(x+1),2)+4*sum1+2*sum2);
cout << "Simson usulida yechim: " << sum;
}
XULOSA:
Xulosa qilib aytganda algebraik va transentdent tenglamalarni hisoblashni biz Differensial tenglamalar fanidan organib olgan edik. Buni yana algebraik tenglamalarni esa maktab darsliklarida ham korgan edik ammo buni yanada osonroq hisoblash uchun dasturini tuzib ham osonlik bilan hisoblash mumkin.
Algoritmlarini tuzish uchun bu tenglamani blok sxemasini va matematik modelini tuzib olgan inson buni bironta dasturlash tilini bilsa shu dasturlash tilida yozib osongina hisoblash mumkin. Biz Algoritmlash fanida shu tenglamalarni algoritmlarini blok sxemasini va matematik modelini tuzishni o’rganamiz.
FOYDALANILGAN ADABIYOTLAR:
Gulomov S.S. Axborot tizimlari va texnalogiyalari. Toshkent 2000y.
Jumanov I.I. , Mingboyev N.S. Informatika-Samarqand: SamDU nashriyoti 2002y.
3. Лебедев В.И. Введение в системы программирования M: Статистика 1975г.
4. Донован Дж Системное программирование М:Мир 1975г.
INTERNET SAHIFALARI:
www.arxiv.uz
www.vikipediya.uz
www.fayllar.org
www.ziyo.net
|
| |