• 1-Ta’rif
  • JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES www.sciencebox.uz SPECIAL ISSUE: APPLYING FOREIGN EXPERIENCE IN
  • JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES




    Download 1,92 Mb.
    Pdf ko'rish
    bet2/7
    Sana01.01.2024
    Hajmi1,92 Mb.
    #129351
    1   2   3   4   5   6   7
    Bog'liq
    63f095e02d54d 2 JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES 2

    JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES
     
    www.sciencebox.uz
    SPECIAL ISSUE: APPLYING FOREIGN EXPERIENCE IN 
    DISTANCE EDUCATION TO THE EDUCATION SYSTEM-2022
    ISSN: 2181-2594
     
    Journal of Innovations in Social Sciences
     
    22 
    1) 
    2) 
    3) 
    4) 
    5) 
    Bu 1) -5) misollar (1) shartdir. 
    6) 
    7) 
    8) 
    6) - 8) misollar (2) shartdir. 
    Biz 
    da trigonometrik funksiyalar sistemasi ortogonal ekanligini ko’rsatdik. 
    6) - 8) lardan 
    ekanligi ko’rinib 
    turibdi.
    Ortogonal funksiyalar sistemasi bilan birga ortonormal funksiyalar sistemasini ham qarash mumkin. 
    1-Ta’rif: Agar 
    bo’lsa u holda 
    funksiya sistemasi 
    normallangan 
    sistemasi deyiladi. 
    2-Ta’rif: 
    cheksiz funksiyalar sistemasi ortogonal va normallangan ya’ni
    bo’lsa bu sistema 
    kesmada ortonormallangan sistema 
    deyiladi. 


    JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES
     
    www.sciencebox.uz
    SPECIAL ISSUE: APPLYING FOREIGN EXPERIENCE IN 
    DISTANCE EDUCATION TO THE EDUCATION SYSTEM-2022
    ISSN: 2181-2594
     
    Journal of Innovations in Social Sciences
     
    23 
    Ushbu 
    umumlashgan ortogonal 
    trigonometrik funksiya sistemasini 
    da qaraymiz. 
    2
    davrli 
    funksiya uchun Furye qatori. 
    Fan va texnikada tez-tez davriy hodisalar bilan ish ko’rishga to’g’ri kelib turadi. Agar biror hodisa 
    maolum bir vaqt oraliqi T dan keyin avvalgi holigacha takrorlanib tursa, bunday hodisani davriy 
    hodisa, T ni esa uning davri deyiladi. 
    To’la aylanish tugagandan so’ng o’zining boshlang’ich holatidan yana o’tadigan bug’ mashinasining 
    barqaror harakati, o’zgaruvchan tok bilan bog’liq ba’zi hodisalar davriy hodisalarga misol bo’la 
    oladi. 
    Shu davriy hodisalar bilan bog’liq bo’lgan turli miqdorlar T davr o’tgach, yana o’zlarining avvalgi 
    qiymatlariga erishadilar va bu miqdorlar vaqt t ning davriy funkg’iyalari bo’ladi, ya’ni

    Davriy funksiyalarning eng soddasi (agar o’zgarmas miqdorni hisobga olmasak) ushbu sinusoidal 
    miqdorlardir: 
    bu yerda w-chastota bo’lib, u davr T bilan quyidagi bog’lanishda: 

    3-Ta’rif. 
    (1) 
    ko’rinishdagi funksional qatorga trigonometrik qator deyiladi. 
    -o’zgarmas sonlar, bular qatorning koeffisientlari deyiladi. 
    funksiyalar 
    2
    davrli
    funksiyalar 
    bo’lgani uchun, agar (1) qator 
    yaqinlaSHuvchi bo’lsa uning yig’indisi albatta biror 2
    davrli 
    funksiya bo’lib 
    bo’ladi. 
    Bizga biror 2
    davrli 
    funksiya berilgan bo’lsin. Bizning maqsadimiz 
    funksiya 
    qandaydir shartlarni qanoatlantirganda, biz SHunday bir trigonometrik qator topaylik, bu qator 
    yaqinlaSHuvchi bo’lib yig’indisi 
    ga teng bo’lsin. 
    Faraz qilaylik 2
    davrli 
    funksiya 
    oraliqda yaqinlauvchi va yig’indisi 
    ga teng 
    bo’lgan quyidagi trigonometrik qatorga yoyilgan bo’lsin:
    (2) 



    Download 1,92 Mb.
    1   2   3   4   5   6   7




    Download 1,92 Mb.
    Pdf ko'rish

    Bosh sahifa
    Aloqalar

        Bosh sahifa



    JOURNAL OF INNOVATIONS IN SOCIAL SCIENCES

    Download 1,92 Mb.
    Pdf ko'rish