Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots




Download 3,22 Mb.
Pdf ko'rish
bet2/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   2   3   4   5   6   7   8   9   ...   81
Bog'liq
Alireza Fasih

Contents 
List of Figures ......................................................................................................................................................... vi 
List of Abbreviations ............................................................................................................................................. 1 
1. 
Introduction .................................................................................................................................................... 5 
1.1 
Motivation and general context ..................................................................................................... 5 
1.2 
Research questions and objectives of the thesis .................................................................... 7 
1.3 
Summary of the key contributions of the thesis .................................................................. 15 
1.3.1 
Scientific significance of the thesis
.................................................................................. 15 
1.3.2 
Practical significance of the thesis
................................................................................... 16 
1.4 
List of publications in the frame of this thesis ..................................................................... 16 
2. 
Requirements of ADAS concerning real-time computing for the image processing 
based Sensors ........................................................................................................................................................ 18 
2.1 
Context and Motivation ................................................................................................................. 18 
2.2 
State of the art of real-time ADAS platforms ......................................................................... 20 
2.3 
Contribution for real-time ADAS ............................................................................................... 21 
3. 
Major limitations of traditional high performance computing concepts ............................ 23 
3.1 
Motivation and general context .................................................................................................. 23 
3.2 
State of the art in traditional processing method ............................................................... 24 
3.3 
Contribution of Ideal ADAS architecture ................................................................................ 25 
4. 
Potential of Neurocomputing including Cellular Neural Networks for ultrafast image 
processing ............................................................................................................................................................... 30 
4.1 
Context and Motivation ................................................................................................................. 30 
4.2 
A survey of the related state-of- the art on image processing based on ANN. ........ 33 
4.3 
Contribution to an image processing platform for ADAS ................................................ 35 
5. 
CNN template calculation schemes with a particular focus on the learning/training 
based approach through Genetic Algorithms .......................................................................................... 39 
5.1 
Introduction ........................................................................................................................................ 39 
5.2 
Genetic algorithm based template optimization for a vision system ......................... 41 
5.2.1 
General background .............................................................................................................. 42 
5.2.2 
Principles of Cellular Neural Network ........................................................................... 43 
5.2.3 
Genetic algorithms ................................................................................................................. 45 


 
iv 
5.2.4 
Initial population for the genetic algorithm ................................................................ 45 
5.2.5 
Selection theory in the genetic algorithms................................................................... 46 
5.2.6 
Reproduction in the genetic algorithms ........................................................................ 46 
5.2.7 
Crossover and mutation in the genetic algorithms .................................................. 47 
5.2.8 
Fitness function in the genetic algorithm ..................................................................... 47 
5.2.9 
Obstacle detection through the developed concept ................................................. 48 
5.3 
Experimental results ....................................................................................................................... 52 
5.4 
Real-
time computing issues for the genetic algorithm based CNN template’s
calculations ........................................................................................................................................................ 55 
6. 
Emulation of analog computing on FPGA ........................................................................................ 58 
6.1 
Introduction ........................................................................................................................................ 58 
6.2 
New computational modeling for solving higher order ODE’s based on FPGA
...... 59 
6.3 
General background ........................................................................................................................ 59 
6.4 
HDL Description and system architecture for the analog computing emulation 
concept of FPGA ............................................................................................................................................... 61 
6.5 
The “Digital Differential Analyzer” method
........................................................................... 63 
6.6 
Integration of hardware and software .................................................................................... 64 
6.7 
Experimental results ....................................................................................................................... 65 
6.7.1 
Future work .............................................................................................................................. 68 
6.8 
Concluding remarks ........................................................................................................................ 68 
7. 
Implementation of CNN on FPGA ........................................................................................................ 69 
7.1 
Introduction ........................................................................................................................................ 69 
7.2 
A framework for FPGA based real-time machine vision: direct convolution versus 
CNN 70 
7.3 
Introduction to video processing platform............................................................................ 70 
7.4 
System Architecture ........................................................................................................................ 71 
7.5 
Hardware Platform Specification .............................................................................................. 72 
7.6 
Electronic System Level and High Level Direct Convolution Modeling ..................... 74 
7.7 
Modeling cellular neural network by DDA ............................................................................ 75 
7.8 
CNN Emulation Architecture ....................................................................................................... 77 
7.9 
Hardware and software integration ......................................................................................... 79 
7.10 Direct convolution vs. CNN 

performance comparison .................................................. 81 


 

7.11 Conclusion ........................................................................................................................................... 82 
8. 
Implementation of CNN on GPU ........................................................................................................... 83 
8.1 
CNN Based High Performance Computing for Real Time Image Processing on GPU
84 
8.2 
Introduction ........................................................................................................................................ 84 
8.3 
Theory of Parallel Computing ..................................................................................................... 86 
8.4 
System Design and Architecture of CNN................................................................................. 88 
8.5 
System Diagram ................................................................................................................................ 90 
8.6 
Methodology of system design using OpenCL ...................................................................... 91 
8.7 
Conclusion ........................................................................................................................................... 94 
9. 
Cellular Neural Networks for Controlling an Unstructured Robot ........................................ 96 
9.1 
Introduction ........................................................................................................................................ 96 
9.2 
Cellular Neural Networks-Based Genetic Algorithm for Optimizing the Behavior of 
an Unstructured Robot ................................................................................................................................. 97 
9.3 
Introduction ........................................................................................................................................ 98 
9.4 
Using genetic algorithms for CNN template optimization ............................................... 99 
9.2 
Training algorithm and simulation results ......................................................................... 104 
9.3 
Conclusion ........................................................................................................................................ 113 
10. 
Conclusion and Outlook ................................................................................................................... 115 
References ........................................................................................................................................................... 119 


 
vi 

Download 3,22 Mb.
1   2   3   4   5   6   7   8   9   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Ultra fast cnn based Hardware Computing Platform Concepts for adas visual Sensors and Evolutionary Mobile Robots

Download 3,22 Mb.
Pdf ko'rish