Research question 4: What are the major template calculation schemes of relevance




Download 3,22 Mb.
Pdf ko'rish
bet9/81
Sana16.05.2024
Hajmi3,22 Mb.
#238917
1   ...   5   6   7   8   9   10   11   12   ...   81
Bog'liq
Alireza Fasih

Research question 4: What are the major template calculation schemes of relevance 
for CNN based image processing? How can these calculations be 
performed in a real-time high performance computing context? 
Cellular neural networks technology provides a very powerful analog computing 
architecture for a variety of array computation and image processing. From a theoretical 
point of view the CNN concept offers the capability of modeling various image processing 
filters and operators on a CNN processors’ based “Universal Machine”. A CNN processors
array used in image processing has a feedback template, a feed-forward template and a 
bias. These three templates are matrices that can be used to reconfigure the CNN 
processors system without any hardware changes. The most challenging issue is however 
to find the appropriate and optimized templates for each application (filter, operator, etc.). 
Generally, there are three ways to calculate both feed-forward and feedback templates. 
One approach consists in the direct mapping of the mathematical model expressing the 


 
11 
required processing to CNN templates; the mathematical models are often in the form of 
either 
Ordinary Differential Equations
(ODEs) or 
Partial Differential Equations
(PDE). The 
other approach consists in using heuristic search methods (i.e., genetic algorithm, iterative 
annealing, and etc). Most image processing operators are working around a central pixel 
such as calculating intensity gradient, finding edging or performing median or Gaussian on 
a pixel by involving the neighboring pixels in the processing of a central pixel. For each 
image processing operator there is a mathematical model and an approximation [29]. 
Using the central difference method we can approximate the original mathematical method 
and apply it on a digital image by using a convolution function. This enabled by the main 
characteristic of the central difference method, which is that we can easily clone/realize it 
by a 2D convolution operator. The forward template is a simple convolution that performs 
only one time in CNN. Therefore, a mathematical model can be used to extract the related 
forward templates of CNN. In case of multiple iterations we can also use the feedback 
templates in CNN. This template should perform on the output of all neighbor cells which 
are around the center cell. After the transient phase, all the values will converge to a stable 
level. Another template calculating approach is using heuristic search algorithm such as 
genetic algorithm and iterative annealing. The genetic algorithm does use a fitness function 
for evaluating the quality of partial results and minimizing the error gradient function. 
During the learning phase the partial training results of CNN will converge to a minimum 
error then one can store both feedback and feed-forward templates. 
Template calculation is a time consuming process. Depending on a given problem we have 
to calculate the appropriate templates. Using genetic algorithms is very time consuming; 
therefore we have to calculate different templates for different scenarios and keep it them 
in a template bank. There are many static templates that we can pre-calculate such as 
image noise removing, laplacian operator/find edges, corner detection, skeleton of regions, 
morphological operators, etc. Another way is using direct mathematical mapping with 
dynamic parameters. This form of CNN template determination can also perform in real 
time. Image enhancement, local thresholding, active contours, etc are some form of 
‘dynamic mathematical mapping’ based templates.


 
12 

Download 3,22 Mb.
1   ...   5   6   7   8   9   10   11   12   ...   81




Download 3,22 Mb.
Pdf ko'rish

Bosh sahifa
Aloqalar

    Bosh sahifa



Research question 4: What are the major template calculation schemes of relevance

Download 3,22 Mb.
Pdf ko'rish